CS 677: Parallel Programming for Many-core Processors Lecture 1

Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu

Objectives

- Learn how to program massively parallel processors and achieve
 - High performance
 - Functionality and maintainability
 - Scalability across future generations
- Acquire technical knowledge required to achieve above goals
 - Principles and patterns of parallel programming
 - Processor architecture features and constraints
 - Programming API, tools and techniques

Important Points

- This is an elective course. You chose to be here.
- Expect to work and to be challenged.
- If your programming background is weak, you will probably suffer.
- This course will evolve to follow the rapid pace of progress in GPU programming. It is bound to always be a little behind...

Important Points II

- At any point ask me WHY?
- You can ask me anything about the course in class, during a break, in my office, by email.
 - If you think a homework is taking too long or is wrong.
 - If you can't decide on a project.

Logistics

- Class webpage: http://www.cs.stevens.edu/~mordohai/classe s/cs677_s17.html
- Office hours: Tuesdays 5-6pm and by email
- Evaluation:
 - Homework assignments (40%)
 - Quizzes (10%)
 - Midterm (15%)
 - Final project (35%)

Project

- Pick topic BEFORE middle of the semester
- I will suggest ideas and datasets, if you can't decide
- Deliverables:
 - Project proposal
 - Presentation in class
 - Poster in CS department event
 - Final report (around 8 pages)

Project Examples

- k-means
- Perceptron
- Boosting
 - General
 - Face detector (group of 2)
- Mean Shift
- Normal estimation for 3D point clouds

More Ideas

- Look for parallelizable problems in:
 - Image processing
 - Cryptanalysis
 - Graphics
 - GPU Gems

- Nearest neighbor search

Version	Time Elapsed*	Step Speedup	Cumulative Speedup
C# CPU Version w/ GUI and CPU-only solver	~900 seconds	n/a	n/a
C CPU Version Command-line only CPU solver	236.65 seconds	Reference	Reference
Kernel1 Working solver on GPU	16.07 seconds	14.73x	14.73x
Kernel3 Added reduction kernel	9.18 seconds	1.75x	25.78x
Kernel4 Changed data structure to array instead of AoS	8.47 seconds	1.08x	27.94x
Kernel5 Simple caching w/ shared memory	7.25 seconds	1.17x	32.64x

GPU: Shared Memory 512 Zombies Average FPS: 45.9

Even More...

- Particle simulations
- Financial analysis
- MCMC
- Games/puzzles

Figure 3: Snowfall

Figure 4: Interactive Snow

Resources

- Textbook
 - Kirk & Hwu. Programming Massively Parallel Processors: A Hands-on Approach. Second Edition, December 2012
 - (Third edition was published on Dec. 21, 2016.)
- Slides and more
 - Textbook's companion site <u>http://booksite.elsevier.com/9780124159921/</u>

Online Resources

- NVIDIA. The NVIDIA CUDA Programming Guide.
 - http://docs.nvidia.com/cuda/pdf/CUDA_C_Progra mming_Guide.pdf
- NVIDIA. CUDA Reference Manual.
- CUDA Toolkit
 - http://developer.nvidia.com/object/cuda_3_2_dow nloads.html
 - http://developer.nvidia.com/cuda-toolkit-41
 - ...
 - https://developer.nvidia.com/cuda-downloads

Lecture Overview

- Scaling up computational power
- GPUs
- Introduction to CUDA
- CUDA programming model

Moore's Law (paraphrased)

"The number of transistors on an integrated circuit doubles every two years."

- Gordon E. Moore

Moore's Law (Visualized)

Data credit: Wikipedia

Serial Performance Scaling is Over

Cannot continue to scale processor frequencies
 – no 10 GHz chips

Cannot continue to increase power consumption

 cannot melt chip

Can continue to increase transistor density

 as per Moore's Law

How to Use Transistors?

- Instruction-level parallelism
 - out-of-order execution, speculation, ...
 - vanishing opportunities in power-constrained world
- Data-level parallelism
 - vector units, SIMD execution, ...
 - increasing ... SSE, AVX, Cell SPE, Clearspeed, GPU
- Thread-level parallelism

. . .

- increasing ... multithreading, multicore, manycore
- Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi,

Why Massively Parallel Processing?

- A quiet revolution and potential build-up
 - Computation: TFLOPs vs. 100 GFLOPs

- GPU in every PC - massive volume & potential impact

Why Massively Parallel Processing?

- A quiet revolution and potential build-up
 - Bandwidth: ~10x

- GPU in every PC - massive volume & potential impact

The "New" Moore's Law

- Computers no longer get faster, just wider
- You *must* re-think your algorithms to be parallel !
- Data-parallel computing is most scalable solution
 - Otherwise: refactor code for 2 cores 4 cores 8 cores 16 cores...
 - You will always have more data than cores build the computation around the data

The von Neumann Model

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2011 ECE408/CS483, University of Illinois, Urbana-Champaign

Generic Multicore Chip

- Handful of processors each supporting ~1 hardware thread
- On-chip memory near processors (cache, RAM, or both)
- Shared global memory space (external DRAM)

Generic Manycore Chip

- Many processors each supporting many hardware threads
- On-chip memory near processors (cache, RAM, or both)
- Shared global memory space (external DRAM)

Enter the GPU

• Massive economies of scale

Graphics in a Nutshell

- Make great images
 - intricate shapes
 - complex optical effects
 - seamless motion
- Make them fast
 - invent clever techniques
 - use every trick imaginable
 - build monster hardware

Eugene d'Eon, David Luebke, Eric Enderton In *Proc. EGSR 2007* and *GPU Gems 3*

- Key abstraction of real-time graphics
- Hardware used to look like this
- One chip/board per stage
- Fixed data flow through pipeline

- Everything had fixed function, with a certain number of modes
- Number of modes for each stage grew over time
- Hard to optimize HW
- Developers always wanted more flexibility

- Remains a key abstraction
- Hardware used to look like this
- Vertex & pixel processing became programmable, new stages added
- GPU architecture increasingly centers around shader execution

• Exposing an (at first limited) instruction set for some stages

• Limited instructions & instruction types and no control flow at first

• Expanded to full Instruction Set Architecture

Why GPUs scale so nicely

- Workload and Programming Model provide lots of parallelism
- Applications provide large groups of vertices at once
 - Vertices can be processed in parallel
 - Apply same transform to all vertices
- Triangles contain many pixels
 - Pixels from a triangle can be processed in parallel
 - Apply same shader to all pixels
- Very efficient hardware to hide serialization bottlenecks

With Moore's Law...

	Vertex	
	Pixel 0	
aster	Pixel 1	lend
ß	Pixel 2	B
	Pixel 3	

More Efficiency

 Note that we do the same thing for lots of pixels/vertices

- A warp = 32 threads launched together
- Usually, execute together as well

Early GPGPU

- All this performance attracted developers
- To use GPUs, re-expressed their algorithms as graphics computations
- Very tedious, limited usability
- Still had some very nice results

• This was the lead up to CUDA
GPU Evolution

- High throughput computation
 - GeForce GTX 280: 933 GFLOPS
 - GeForce 600 series (Kepler): 2 2811 GFLOPS
 - GTX Titan Z with 5760 cores: 8000 GFLOPS
- High bandwidth
 - GeForce GTX 280: 140 GB/s
 - GeForce 600 series (Kepler): 2 192 GB/s
 - GTX Titan Z with 5760 cores: 672 GB/s
- High availability to all

"Fermi" 3B Xtors

Lessons from Graphics Pipeline

- Throughput is paramount
 - must paint every pixel within frame time
 - scalability
 - video games have strict time requirements: bare minimum: 2 Mpixels * 60 fps * 2 = 240 Mthread/s
- Create, run, & retire lots of threads very rapidly
 - measured 14.8 Gthread/s on increment() kernel (2010)
- Use multithreading to hide latency
 - 1 stalled thread is OK if 100 are ready to run

Why is this different from a CPU?

- Different goals produce different designs
 - GPU assumes work load is highly parallel
 - CPU must be good at everything, parallel or not
- CPU: minimize latency experienced by 1 thread
 - big on-chip caches
 - sophisticated control logic
- GPU: maximize throughput of all threads
 - # threads in flight limited by resources => lots of resources (registers, bandwidth, etc.)
 - multithreading can hide latency => skip the big caches
 - share control logic across many threads

Design Philosophies

GPU Throughput Oriented Cores

Chip						
	Compute Unit					
	Cache/Local Mem					
	Registers	Thr				
	SIMD	eadir				
	Unit	DU				

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 ECE408/CS483, University of Illinois, Urbana-Champaign

CPU Latency Oriented Cores

CPUs: Latency Oriented Design

- Large caches
 - Convert long latency memory accesses to short latency cache accesses
- Sophisticated control
 - Branch prediction for reduced branch latency
 - Data forwarding for reduced data latency
- Powerful ALU
 - Reduced operation latency

GPUs: Throughput Oriented Design

- Small caches
 - To boost memory throughput
- Simple control
 - No branch prediction
 - No data forwarding
- Energy efficient ALUs
 - Many, long latency but heavily pipelined for high throughput
- Require massive number of threads to tolerate latencies

	G	PU					
DRAM							

SMs and SPs

- SM: Streaming Multiprocessor
- SP: Streaming Processor (core)

NVIDIA GPU Architecture

Fermi GF100

SM Multiprocessor

- 32 CUDA Cores per SM (512 total)
- Direct load/store to memory
 - High bandwidth (Hundreds GB/sec)
- 64KB of fast, on-chip RAM
 - Software or hardware-managed
 - Shared amongst CUDA cores
 - Enables thread communication

Instruction Cache					
Scheduler		Scheduler			
Dispatch		Dispatch			
Register File					
Core	Core	Core	Core		
Core	Core	Core	Core		
Core	Core	Core	Core		
Core	Core	Core	Core		
Core	Core	Core	Core		
Core	Core	Core	Core		
Core	Core	Core	Core		
Core	Core	Core	Core		
Loa	d/Store	Units	x 16		
Special Func Units x 4					
Interconnect Network					
64K Configurable Cache/Shared Mem					
Uniform Cache					

Key Architectural Ideas

- **SIMT** (Single Instruction Multiple Thread) execution
 - threads run in groups of 32 called warps
 - threads in a warp share instruction unit (IU)
 - HW automatically handles divergence
- Hardware multithreading
 - HW resource allocation & thread scheduling
 - HW relies on threads to hide latency
- Threads have all resources needed to run
 - any warp not waiting for something can run
 - context switching is (basically) free

Enter CUDA

- Scalable parallel programming model
- Minimal extensions to familiar C/C++ environment
- Heterogeneous serial-parallel computing

CUDA: Scalable parallel programming

- Augment C/C++ with minimalist abstractions
 - let programmers focus on parallel algorithms
 - *not* mechanics of a parallel programming language
- Provide straightforward mapping onto hardware
 - good fit to GPU architecture
 - maps well to multi-core CPUs too
- Scale to 100s of cores & 10,000s of parallel threads
 - GPU threads are lightweight create / switch is free
 - GPU needs 1000s of threads for full utilization

Key Parallel Abstractions in CUDA

• Hierarchy of concurrent threads

• Lightweight synchronization primitives

Shared memory model for cooperating threads

Hierarchy of concurrent threads

Parallel kernels composed of many threads

 all threads execute the same sequential program

Threads are grouped into thread blocks

 threads in the same block can cooperate

• Threads/blocks have unique IDs

Thread t

Block *b*

t0 t1 … tB

CUDA Model of Parallelism

Global Memory

- CUDA virtualizes the physical hardware
 - a thread is a virtualized scalar processor (registers, PC, state)
 - a block is a virtualized multiprocessor (threads, shared memory)
- Scheduled onto physical hardware without pre-emption
 - threads/blocks launch & run to completion
 - blocks should be independent

NOT: Flat Multiprocessor

- Global synchronization isn't cheap
- Global memory access times are expensive

NOT: Distributed Processors

• Distributed computing is a different setting

• cf. BSP (Bulk Synchronous Parallel) model, MPI

Heterogeneous Computing

Manycore GPU

CUDA Programming Model

Overview

- CUDA programming model basic concepts and data types
- CUDA application programming interface basic
- Simple examples to illustrate basic concepts and functionalities
- Performance features will be covered later

CUDA - C

- Integrated host+device app C program
 - Serial or modestly parallel parts in host C code
 - Highly parallel parts in device SPMD kernel C code

CUDA Devices and Threads

- A compute device
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel
 - Is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - Multi-core CPU needs only a few

Arrays of Parallel Threads

- A CUDA kernel is executed by a grid (array) of threads
 - All threads run the same code
 - Each thread has an ID that it uses to compute memory addresses and make control decisions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2011 ECE408/CS483, University of Illinois, Urbana-Champaign

Thread Blocks: Scalable Cooperation

- Divide monolithic thread array into multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks cannot cooperate

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2011 ECE408/CS483, University of Illinois, Urbana-Champaign

Block IDs and Thread IDs

CUDA Memory Model Overview

- Global memory
 - Main means of communicating R/W Data between host and device
 - Contents visible to all threads
 - Long latency access
- We will focus on global memory for now
 - Constant and texture memory will come later

CUDA API Highlights: Easy and Lightweight

• The API is an extension to the ANSI C programming language

→ Low learning curve

 The hardware is designed to enable lightweight runtime and driver
 High performance

Extended C

- Declspecs
 - global, device, shared,
 local, constant
 global
- Keywords
 - threadIdx, blockIdx
- Intrinsics
 - ____syncthreads
- Runtime API
 - Memory, symbol, execution management
- Function launch

```
__device__ float filter[N];
  _global___ void convolve (float *image)
                                           ł
  shared float region[M];
  . . .
  region[threadIdx] = image[i];
  syncthreads()
  . . .
  image[j] = result;
}
// Allocate GPU memory
void *myimage; cudaMalloc(myimage, bytes)
```

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

CUDA Device Memory Allocation

Host

- cudaMalloc()
 - Allocates object in the device <u>Global Memory</u>
 - Requires two parameters
 - Address of a pointer to the allocated object
 - Size of allocated object
- cudaFree()
 - Frees object from device Global Memory
 - Pointer to freed object

CUDA Device Memory Allocation (cont.)

- Code example:
 - Allocate a 64 * 64 single precision float array
 - Attach the allocated storage to Md
 - "d" is often used to indicate a device data structure

```
int TILE_WIDTH = 64;
float* Md;
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);
```

```
cudaMalloc((void**)&Md, size);
cudaFree(Md);
```

CUDA Host-Device Data Transfer

- cudaMemcpy()
 - memory data transfer
 - Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type of transfer
 - Host to Host
 - Host to Device
 - Device to Host
 - Device to Device
- Asynchronous transfer

CUDA Host-Device Data Transfer (cont.)

- Code example:
 - Transfer a 64 * 64 single precision float array
 - M is in host memory and Md is in device memory
 - cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Function Declarations

	Executed on the:	Only callable from the:
<u>device</u> float DeviceFunc()	device	device
global void KernelFunc()	device	host
<u>host</u> float HostFunc()	host	host

Must return void

• <u>device</u> and <u>host</u> can be used together

CUDA Function Declarations (cont.)

- <u>device</u> functions cannot have their address taken
- For functions executed on the device:
 - No recursion
 - Recursion supported since CUDA Toolkit 3.1
 - No static variable declarations inside the function
 - No variable number of arguments
Calling a Kernel Function - Thread Creation

• A kernel function must be called with an execution configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

- dim3 DimBlock(4, 8, 8); // 256 threads per block
- size_t SharedMemBytes = 64; // 64 bytes of shared
 memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes
>>>(...);

• Any call to a kernel function is asynchronous from CUDA 1.0 on, explicit synch needed for blocking

Example: vector_addition

Device Code

Example: vector_addition

```
// compute vector sum c = a + b
// each thread performs one pair-wise addition
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   C[i] = A[i] + B[i];
}
                                          Host Code
int main()
   // initialization code
   // launch N/256 blocks of 256 threads each
   vector_add<<< N/256, 256>>>(d_A, d_B, d_C);
```

Example: Initialization code for vector_addition

// allocate and initialize host (CPU) memory
float *h_A = ..., *h_B = ...;

// allocate device (GPU) memory

float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float)); cudaMalloc((void**) &d_B, N * sizeof(float)); cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float),
 cudaMemcpyHostToDevice));
cudaMemcpy(d_B, h_B, N * sizeof(float),
 cudaMemcpyHostToDevice));

// launch N/256 blocks of 256 threads each
vector_add<<<N/256, 256>>>(d_A, d_B, d_C);

Running Example: Matrix Multiplication

- A simple matrix multiplication example that illustrates the basic features of memory and thread management in CUDA programs
 - Leave shared memory usage until later
 - Local, register usage
 - Thread ID usage
 - Memory data transfer API between host and device
 - Assume square matrix for simplicity

Programming Model: Square Matrix Multiplication Example

- P = M * N of size WIDTH x WIDTH
- Without tiling:
 - One thread calculates one element of P
 - M and N are loaded width times from global memory

Memory Layout of a Matrix in C

M _{0,0}	M _{1,0}	M _{2,0}	M _{3,0}
M _{0,1}	M _{1,1}	M _{2,1}	M _{3,1}
M _{0,2}	M _{1,2}	M _{2,2}	M _{3,2}
M _{0,3}	M _{1,3}	M _{2,3}	M _{3,3}

Matrix Multiplication A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision void MatrixMulOnHost(float* M, float* N, float* P, int Width)

Step 1: Input Matrix Data Transfer (Host-side Code)

```
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{
    int size = Width * Width * sizeof(float);
    float *Md, *Nd, *Pd;
```

 // Allocate and Load M, N to device memory cudaMalloc(&Md, size); cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

```
cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
```

// Allocate P on the device
cudaMalloc(&Pd, size);

Step 3: Output Matrix Data Transfer (Host-side Code)

- 2. // Kernel invocation code to be shown later
- // Read P from the device cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

```
// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}
```

Step 2: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;

Step 2: Kernel Function (cont.)

Md

```
for (int k = 0; k < Width; ++k) {
    float Melement = Md[threadIdx.y*Width+k];
    float Nelement = Nd[k*Width+threadIdx.x];
    Pvalue += Melement * Nelement;
}</pre>
```

```
Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
```


© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 ECE 498AL, University of Illinois, Urbana-Champaign Step 2: Kernel Invocation (Host-side Code)

// Setup the execution configuration dim3 dimGrid(1, 1); dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Only One Thread Block Used

- One Block of threads computes matrix Pd
 - Each thread computes one element of Pd
- Each thread
 - Loads a row of matrix Md
 - Loads a column of matrix Nd
 - Performs one multiply and addition for each pair of Md and Nd elements
 - Compute to off-chip memory access ratio close to 1:1 (not very high)
- Size of matrix limited by the number of threads allowed in a thread block

Handling Arbitrary Sized Square Matrices (will cover later)

- Have each 2D thread block to compute a (TILE_WIDTH)² submatrix (tile) of the result matrix
 - Each has (TILE_WIDTH)² threads
- Generate a 2D Grid of (WIDTH/TILE_WIDTH)² blocks

You still need to put a loop around the kernel call for cases where WIDTH/TILE_WIDTH is greater than max grid size (64K)!

Nd

Some Useful Information on Tools

Download CUDA Toolkit 8.0 https://developer.nvidia.com/cuda-downloads

Compilation

- Any source file containing CUDA language extensions must be compiled with NVCC
- NVCC is a compiler driver
 - Works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...
- NVCC outputs:
 - C code (host CPU Code)
 - Must then be compiled with the rest of the application using another tool
 - PTX (Parallel Thread eXecution)
 - Object code directly
 - Or, PTX source, interpreted at runtime