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CS 677 Parallel Programming forCS 677: Parallel Programming for 
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Instructor: Philippos Mordohai
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ObjectivesObjectives

• Learn how to program massively parallelLearn how to program massively parallel 
processors and achieve
– High performance
– Functionality and maintainability
– Scalability across future generations

• Acquire technical knowledge required to 
achieve above goals

Principles and patterns of parallel programming– Principles and patterns of parallel programming
– Processor architecture features and constraints
– Programming API tools and techniques
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Programming API, tools and techniques
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Important PointsImportant Points

• This is an elective course. You chose to beThis is an elective course. You chose to be 
here.

• Expect to work and to be challenged.Expect to work and to be challenged.
• If your programming background is weak, 

you will probably suffer.you will probably suffer.

• This course will evolve to follow the rapid• This course will evolve to follow the rapid 
pace of progress in GPU programming. It 
is bound to always be a little behind…
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is bound to always be a little behind…
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Important Points IIImportant Points II

• At any point ask me WHY?y p

• You can ask me anything about the course 
in class, during a break, in my office, byin class, during a break, in my office, by 
email. 
– If you think a homework is taking too long or isIf you think a homework is taking too long or is 

wrong.

– If you can’t decide on a project.If you can t decide on a project.
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LogisticsLogistics

• Class webpage:Class webpage: 
http://www.cs.stevens.edu/~mordohai/classe
s/cs677 s17.htmls cs6 _s

• Office hours: Tuesdays 5-6pm and by email

• Evaluation:• Evaluation:  
– Homework assignments (40%)

– Quizzes (10%)– Quizzes (10%)

– Midterm (15%)

– Final project (35%)
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Final project (35%)
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ProjectProject

• Pick topic BEFORE middle of thePick topic BEFORE middle of the 
semester

• I will suggest ideas and datasets, if youI will suggest ideas and datasets, if you 
can’t decide

• Deliverables:Deliverables:
– Project proposal
– Presentation in classese tat o c ass
– Poster in CS department event
– Final report (around 8 pages)
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Project ExamplesProject Examples

• k-means

• Perceptron

• Boosting• Boosting 
– General

Face detector (group– Face detector (group 
of 2)

• Mean Shift• Mean Shift

• Normal estimation for 
3D i l d
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3D point clouds
7



More IdeasMore Ideas

• Look for parallelizable problems in:
– Image processing

– Cryptanalysisyp y

– Graphics
• GPU Gems

– Nearest neighbor search
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Even MoreEven More…

• Particle simulationsParticle simulations

• Financial analysis

MCMC• MCMC

• Games/puzzles
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ResourcesResources

• TextbookTextbook
– Kirk & Hwu.  Programming Massively Parallel 

Processors: A Hands-on Approach SecondProcessors: A Hands on Approach. Second 
Edition, December 2012

– (Third edition was published on Dec. 21,(Third edition was published on Dec. 21, 
2016.)

• Slides and moreSlides and more
– Textbook’s companion site

http://booksite.elsevier.com/9780124159921/
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http://booksite.elsevier.com/9780124159921/

10



Online ResourcesOnline Resources

• NVIDIA. The NVIDIA CUDA Programming g g
Guide.  
– http://docs.nvidia.com/cuda/pdf/CUDA_C_Progra

mming Guide pdfmming_Guide.pdf
• NVIDIA. CUDA Reference Manual. 
• CUDA ToolkitCUDA Toolkit

– http://developer.nvidia.com/object/cuda_3_2_dow
nloads.html
http://developer nvidia com/cuda toolkit 41– http://developer.nvidia.com/cuda-toolkit-41

– …
– https://developer.nvidia.com/cuda-downloads
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Lecture OverviewLecture Overview

• Scaling up computational powerScaling up computational power

• GPUs

I d i CUDA• Introduction to CUDA

• CUDA programming model
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Moore’s Law (paraphrased)Moore s Law (paraphrased)

“The number of transistors on an integrated g
circuit doubles every two years.” 

– Gordon E. Moore
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Moore’s Law (Visualized)
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Serial Performance Scaling is OverSerial Performance Scaling is Over

• Cannot continue to scale processor frequenciesp q
– no 10 GHz chips

• Cannot continue to increase power consumption
t lt hi– cannot melt chip

• Can continue to increase transistor density
– as per Moore’s Law
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How to Use Transistors?How to Use Transistors?

• Instruction-level parallelismp
– out-of-order execution, speculation, …
– vanishing opportunities in power-constrained world

• Data-level parallelism
– vector units, SIMD execution, …
– increasing … SSE, AVX, Cell SPE, Clearspeed, GPU

• Thread-level parallelismThread level parallelism
– increasing … multithreading, multicore, manycore
– Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, 

16

…

16



Why Massively Parallel Processing?
• A quiet revolution and potential build-up

– Computation: TFLOPs vs. 100 GFLOPs

T12

GT200

G80

G 00

WestmereG70

G80

3GH C 2
3GHz Xeon 

– GPU in every PC – massive volume & potential impact

Westmere
NV30 NV40 3GHz Dual 

Core P4

3GHz Core2 
Duo

Quad
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GPU in every PC massive volume & potential impact
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Why Massively Parallel Processing?
• A quiet revolution and potential build-up

– Bandwidth: ~10x

T12

GT200

T12

G80

NV30
NV40 G70

3GHz Core2
3GHz Xeon 

Quad
Westmere

– GPU in every PC – massive volume & potential impact

NV30
3GHz Dual 

Core P4

3GHz Core2 
Duo

Q
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GPU in every PC massive volume & potential impact
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The “New” Moore’s LawThe New  Moore s Law

• Computers no longer get faster, just widerp g g , j

• You must re-think your algorithms to be parallel !

• Data-parallel computing is most scalable solution
Oth i f t d f 2 8 cores4 cores 16 cores– Otherwise: refactor code for 2 cores 

– You will always have more data than cores –
build the computation around the data

8 cores4 cores 16 cores… 
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The von Neumann Model

Memoryy
I/O

P i U it

ALU
Reg
File

Processing Unit

C l U i

ALU File

Control Unit
PC IR

20© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2011 
ECE408/CS483, University of Illinois, Urbana-Champaign 20



Generic Multicore Chip

Processor MemoryProcessor Memory

Global Memory

• Handful of processors each supporting ~1 hardware thread

• On-chip memory near processors  (cache, RAM, or both)

• Shared global memory space  (external DRAM)
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Generic Manycore Chip

• • •
Processor MemoryProcessor Memory

  

Global Memory

• Many processors each supporting many hardware threads

• On-chip memory near processors  (cache, RAM, or both)

• Shared global memory space  (external DRAM)
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Enter the GPUEnter the GPU

• Massive economies of scaleMassive economies of scale

M i l ll l• Massively parallel

2323



Graphics in a Nutshell
• Make great images

– intricate shapes
– complex optical effects
– seamless motion

• Make them fast
– invent clever 

techniquestechniques
– use every trick 

imaginable
build monster– build monster 
hardware

Eugene d’Eon, David Luebke, Eric Enderton
In Proc. EGSR 2007 and GPU Gems 3



The Graphics Pipeline

Vertex Transform & LightingVertex Transform & Lighting

Triangle Setup & RasterizationTriangle Setup & Rasterization

Texturing & Pixel ShadingTexturing & Pixel Shading

Depth Test & BlendingDepth Test & Blending

FramebufferFramebuffer
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The Graphics Pipeline

Vertex Transform & LightingVertex Transform & Lighting

Triangle Setup & RasterizationTriangle Setup & Rasterization

Texturing & Pixel ShadingTexturing & Pixel Shading

Depth Test & BlendingDepth Test & Blending

FramebufferFramebuffer
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The Graphics Pipeline

• Key abstraction of real-time VertexVertex

graphics
RasterizeRasterize

• Hardware used to look like this
PixelPixel

• One chip/board per stage
Test & BlendTest & Blend

• Fixed data flow through pipeline
FramebufferFramebuffer
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The Graphics Pipeline

• Everything had fixed function, 
with a certain number of modes

VertexVertex
with a certain number of modes

• Number of modes for each RasterizeRasterize

stage grew over time

H d i i HW
PixelPixel

• Hard to optimize HW

D l l t d
Test & BlendTest & Blend

• Developers always wanted more 
flexibility

FramebufferFramebuffer
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The Graphics Pipeline

• Remains a key abstraction
VertexVertex

• Hardware used to look like this
RasterizeRasterize

• Vertex & pixel processing 
became programmable, new 
stages added

PixelPixel
stages added

• GPU architecture increasinglyTest & BlendTest & Blend • GPU architecture increasingly 
centers around shader 
executionFramebufferFramebuffer
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The Graphics Pipeline

• Exposing an (at first limited) 
instruction set for some stages

VertexVertex
instruction set for some stages

RasterizeRasterize

• Limited instructions & instruction 
types and no control flow at firstPixelPixel

Test & BlendTest & Blend
• Expanded to full Instruction Set 

Architecture
FramebufferFramebuffer

3232



Why GPUs scale so nicely

• Workload and Programming Model provide 
lots of parallelismlots of parallelism

• Applications provide large groups of vertices 
at once
– Vertices can be processed in parallel
– Apply same transform to all vertices

• Triangles contain many pixels• Triangles contain many pixels
– Pixels from a triangle can be processed in parallel
– Apply same shader to all pixelspp y p

• Very efficient hardware to hide serialization 
bottlenecks

3333



With Moore’s LawWith Moore s Law…

Vertex
Vertex

Pixel 0
Raster

Pixel Ra
st
er

Pixel 0

Bl
en

dPixel 1

Pixel 2

Blend Pixel 3

Vrtx 0

Vr
tx
2

Vr
tx
1
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More EfficiencyMore Efficiency

• Note that we do the same thing for lots ofNote that we do the same thing for lots of 
pixels/vertices
Control Control Control Control Control Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

Control

ALU ALU ALU ALU ALU ALU

A warp 32 threads launched together
35

• A warp = 32 threads launched together

• Usually, execute together as well 35



Early GPGPUEarly GPGPU

• All this performance attracted developersAll this performance attracted developers
• To use GPUs, re-expressed their 

algorithms as graphics computationsalgorithms as graphics computations
• Very tedious, limited usability
• Still had some very nice results• Still had some very nice results

• This was the lead up to CUDA

3636



GPU Evolution
• High throughput computation

– GeForce GTX 280: 933 GFLOPS
– GeForce 600 series (Kepler): 2 2811 GFLOPS
– GTX Titan Z with 5760 cores: 8000 GFLOPS

• High bandwidth
– GeForce GTX 280: 140 GB/s 
– GeForce 600 series (Kepler): 2 192 GB/s

“Fermi”“Fermi”

3B3B xtorsxtorsGeForce 600 series (Kepler): 2 192 GB/s
– GTX Titan Z with 5760 cores: 672 GB/s

• High availability to all
GeForce 8800GeForce 8800

681M 681M xtorsxtors

RIVA 128RIVA 128
3M xtors3M xtors

GeForceGeForce®® 256256
23M xtors23M xtors

GeForceGeForce FXFX
125M 125M xtorsxtors

GeForceGeForce 3 3 
60M 60M xtorsxtors

1995 2000 2005 2010
37



Lessons from Graphics PipelineLessons from Graphics Pipeline

• Throughput is paramount
– must paint every pixel within frame time
– scalability
– video games have strict time requirements:  bare 

i i 2 M i l * 60 f * 2 240 Mth d/minimum: 2 Mpixels * 60 fps * 2 = 240 Mthread/s

• Create, run, & retire lots of threads very rapidly
– measured 14.8 Gthread/s on increment() kernel (2010)

• Use multithreading to hide latency
1 stalled thread is OK if 100 are ready to run

38

– 1 stalled thread is OK if 100 are ready to run
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Why is this different from a CPU?Why is this different from a CPU?

• Different goals produce different designs
GPU k l d i hi hl ll l– GPU assumes work load is highly parallel

– CPU must be good at everything, parallel or not

CPU: minimize latency experienced by 1 thread• CPU: minimize latency experienced by 1 thread
– big on-chip caches
– sophisticated control logic

• GPU: maximize throughput of all threads
– # threads in flight limited by resources => lots of resources 

(registers, bandwidth, etc.)( g , , )
– multithreading can hide latency => skip the big caches
– share control logic across many threads

3939



Design PhilosophiesDesign Philosophies

GPU CPU
Throughput Oriented Cores

Chip

Latency Oriented Cores

Chip

Compute Unit
Cache/Local Mem

Core

Registers

SIMD

Threa

Local Cache

Registers

C

SIMD 
Unit

ading

Registers

SIMD Unit

C
ontrol

40
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CPUs: Latency Oriented DesignCPUs: Latency Oriented Design 

• Large caches
– Convert long latency 

memory accesses to short 
latency cache accesses

ALU
Control

ALU
latency cache accesses

• Sophisticated control
– Branch prediction for 

Control
ALUALUCPU

reduced branch latency
– Data forwarding for 

reduced data latency

Cache

DRAM
y

• Powerful ALU
– Reduced operation latency

DRAM

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
ECE408/CS483, University of Illinois, Urbana-Champaign 41



GPUs: Throughput Oriented DesignGPUs: Throughput Oriented Design

• Small caches
– To boost memory throughput

• Simple control
No branch prediction– No branch prediction

– No data forwarding

• Energy efficient ALUs
GPU

e gy e c e Us
– Many, long latency but heavily 

pipelined for high throughput

R i i b f DRAM• Require massive number of 
threads to tolerate latencies

DRAM

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 
ECE408/CS483, University of Illinois, Urbana-Champaign 42



SMs and SPsSMs and SPs

• SM: Streaming MultiprocessorSM: Streaming Multiprocessor

SP S i P ( )• SP: Streaming Processor (core)

4343



NVIDIA GPU Architecture
Fermi GF100

I/FI/F
D

R
D

R
D

R
A

M
 I

D
R

A
M

 I R
A

M
 I/F

R
A

M
 I/F

H
O

ST
 I/

F
H

O
ST

 I/
F

D
R

A
M

 I/F
D

R
A

M
 I/F

L2L2

G
ig

a 
Th

re
ad D

R
A

M
 I/F

D
R

A
M

 I/F

L2L2

G
R

A
M

 I/
F

R
A

M
 I/

F D
R

A
M

 I/
D

R
A

M
 I/

D
R

D
R /F/F

44



SM Multiprocessor
SchedulerScheduler

DispatchDispatch

SchedulerScheduler

DispatchDispatch

Instruction CacheInstruction Cache

• 32 CUDA Cores per SM (512 total)

Register FileRegister File

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

• Direct load/store to memory
– High bandwidth (Hundreds GB/sec)

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore CoreCore CoreCore CoreCore

• 64KB of fast, on-chip RAM
– Software or hardware-managed
– Shared amongst CUDA cores

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

– Enables thread communication

Load/Store Units x 16
Special Func Units x 4

Interconnect NetworkInterconnect Network

64K Configurable64K Configurable
Cache/SharedCache/Shared MemMemCache/Shared Cache/Shared MemMem

Uniform CacheUniform Cache



Key Architectural Ideas

• SIMT (Single Instruction Multiple Thread) 
execution

SchedulerScheduler

DispatchDispatch

SchedulerScheduler

DispatchDispatch

Instruction CacheInstruction Cache

– threads run in groups of 32 called warps
– threads in a warp share instruction unit (IU)
– HW automatically handles divergence

Register FileRegister File

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

y g

• Hardware multithreading
– HW resource allocation & thread scheduling

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore CoreCore CoreCore CoreCore

HW resource allocation & thread scheduling
– HW relies on threads to hide latency

• Threads have all resources needed to run

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

• Threads have all resources needed to run
– any warp not waiting for something can run
– context switching is (basically) free

Load/Store Units x 16
Special Func Units x 4

Interconnect NetworkInterconnect Network

64K Configurable64K Configurable
Cache/SharedCache/Shared MemMem

46
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Enter CUDAEnter CUDA

• Scalable parallel programming modelScalable parallel programming model

Mi i l i f ili C/C• Minimal extensions to familiar C/C++ 
environment

• Heterogeneous serial-parallel computing

4747



CUDA: Scalable parallel 
iprogramming

• Augment C/C++ with minimalist abstractionsg
– let programmers focus on parallel algorithms
– not mechanics of a parallel programming language

• Provide straightforward mapping onto hardware
– good fit to GPU architecture
– maps well to multi-core CPUs too

• Scale to 100s of cores & 10 000s of parallel• Scale to 100s of cores & 10,000s of parallel 
threads
– GPU threads are lightweight — create / switch is free

GPU d 1000 f h d f f ll ili i

48

– GPU needs 1000s of threads for full utilization
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Key Parallel Abstractions in CUDAKey Parallel Abstractions in CUDA

• Hierarchy of concurrent threads

• Lightweight synchronization primitivesLightweight synchronization primitives

• Shared memory model for cooperating 
threads

49

threads
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Hierarchy of concurrent threadsHierarchy of concurrent threads

• Parallel kernels composed of many threads Thread tp y
– all threads execute the same sequential program

• Threads are grouped into thread blocks
Bl k b

g p
– threads in the same block can cooperate t0 t1 … tB

Block b

• Threads/blocks have unique IDs

50

q
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CUDA Model of Parallelism

• • •
Block MemoryBlock Memory

  

Global Memory

• CUDA virtualizes the physical hardware
– a thread is a virtualized scalar processor (registers, PC, state)

– a block is a virtualized multiprocessor (threads, shared memory)

• Scheduled onto physical hardware without pre-emption
– threads/blocks launch & run to completion

– blocks should be independent

51



NOT:  Flat Multiprocessor

Processors

Gl b l MGlobal Memory

• Global synchronization isn’t cheap

• Global memory access times are expensive

52



NOT:  Distributed Processors

Processor MemoryProcessor Memory

• • •

I t ti N t k

  

Di t ib t d ti i diff t tti

Interconnection Network

• Distributed computing is a different setting

• cf.  BSP (Bulk Synchronous Parallel) model, MPI

53



Control Flow DivergenceControl Flow Divergence

BranchBranchBranchBranch

Branch

Path A

Path C

Path B

54



Heterogeneous Computing

Manycore GPUMulticore CPU
Multicore CPU

55



CUDA Programming ModelCUDA Programming Model

56



OverviewOverview

• CUDA programming model – basic concepts p g g p
and data types

CUDA li i i i f• CUDA application programming interface -
basic

• Simple examples to illustrate basic concepts 
and functionalities

• Performance features will be covered later

57
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CUDA – C
• Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host) 

Parallel Kernel (device)
. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host) 

Parallel Kernel (device)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

. . .
Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);
58



CUDA Devices and Threads

• A compute device
– Is a coprocessor to the CPU or hostp

– Has its own DRAM (device memory) 

– Runs many threads in parallel

Is typically a GPU but can also be another type of parallel– Is typically a GPU but can also be another type of  parallel 
processing device 

• Data-parallel portions of an application are expressed as 
device kernels which run on many threads

• Differences between GPU and CPU threads 
GPU threads are extremely lightweight– GPU threads are extremely lightweight
• Very little creation overhead

– GPU needs 1000s of threads for full efficiency
M lti CPU d l f

59
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• Multi-core CPU needs only a few
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Arrays of Parallel Threads

• A CUDA kernel is executed by a grid (array) of
threads
– All threads run the same code
– Each thread has an ID that it uses to compute memory 

addresses and make control decisions

…
0 1 2 254 255

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C d[i] = A d[i] + B d[i];C_d[i] = A_d[i] + B_d[i];

…

60
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2011 
ECE408/CS483, University of Illinois, Urbana-Champaign



Thread Blocks: Scalable Cooperation
• Divide monolithic thread array into multiple blocks

– Threads within a block cooperate via shared memory, 
atomic operations and barrier synchronization

– Threads in different blocks cannot cooperate

6161
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2011 
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Block IDs and Thread IDs

Host Device

Block IDs and Thread IDs

• Each thread uses IDs to

Kernel 
1

Grid 1

Block
(0, 0)

Block
(1, 0)

Each thread uses IDs to 
decide what data to work 
on
– Block ID: 1D or 2D

Block
(0, 1)

Block
(1, 1)

Grid 2

– Thread ID: 1D, 2D, or 3D 

• Simplifies memory
Kernel 

2

Block (1,  1)
(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Simplifies memory
addressing when 
processing
multidimensional data

Thread Thread Thread Thread

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

– Image processing
– Solving PDEs on volumes
– …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign

Courtesy: NDVIA
(0,1,0) (1,1,0) (2,1,0) (3,1,0)
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CUDA Memory Model Overviewy

• Global memory
– Main means of

Grid

– Main means of 
communicating R/W 
Data between host and 
device Block (0, 0)

Shared Memory

R i t R i t

Block (1, 0)

Shared Memory

R i t R i t

device
– Contents visible to all 

threads

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers– Long latency access

• We will focus on global 
memory for now

Global MemoryHost

memory for now
– Constant and texture 

memory will come later

63
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CUDA API Highlights:
E d Li ht i htEasy and Lightweight

• The API is an extension to the ANSI CThe API is an extension to the ANSI C 
programming language

Low learning curveLow learning curve

• The hardware is designed to enable
lightweight runtime and driver

High performance

64
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Extended CExtended C
• Declspecs

– global, device, shared, 
local, constant

__device__ float filter[N]; 

global void convolve (float *image) {local, constant

• Keywords
– threadIdx, blockIdx

__global__ void convolve (float *image)  {

__shared__ float region[M];
... 

,

• Intrinsics
– __syncthreads

region[threadIdx] = image[i]; 

__syncthreads()  
... 

• Runtime API
– Memory, symbol, 

execution management

image[j] = result;
}

// Allocate GPU memory
i i i

• Function launch

void *myimage; cudaMalloc(myimage, bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

65
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, ( y g );
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CUDA Device Memory Allocation

• cudaMalloc()
– Allocates object in the

Grid

Allocates object in the 
device Global MemoryGlobal Memory

– Requires two parameters

Block (0, 0) 

Shared Memory

Block (1, 0) 

Shared Memoryq p
• Address of a pointer to the 

allocated object
• Size of allocated object

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers

Thread (0, 0) 

Registers

Thread (1, 0) 

Registers

• Size of allocated object

• cudaFree()
Frees object from device

Global
Memory

Host

– Frees object from device 
Global Memory

• Pointer to freed object

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 498AL, University of Illinois, Urbana-Champaign
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CUDA Device Memory Allocation (cont.) 

• Code example: 
– Allocate a 64 * 64 single precision float arrayAllocate a  64  64 single precision float array
– Attach the allocated storage to Md
– “d” is often used to indicate a device datad  is often used to indicate a device data 

structure

int TILE_WIDTH = 64;
float* Md;
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);
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CUDA Host-Device Data Transfer

• cudaMemcpy() 
– memory data transfer Grid– memory data transfer
– Requires four parameters

• Pointer to destination 

Block (0, 0) 

Shared Memory

Block (1, 0) 

Shared Memory

• Pointer to source
• Number of bytes copied
• Type of transfer

Shared Memory

Registers Registers

Shared Memory

Registers Registers

Type of transfer 
– Host to Host
– Host to Device
– Device to Host

Global
Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0) 

Host
Device to Host

– Device to Device

• Asynchronous transfer

68
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CUDA Host-Device Data Transfer (cont.)( )

• Code example: 
– Transfer a  64 * 64 single precision float array
– M is in host memory and Md is in device memory

cudaMemcpyHostToDevice and– cudaMemcpyHostToDevice and 
cudaMemcpyDeviceToHost are symbolic 
constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);
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CUDA KeywordsCUDA Keywords
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CUDA Function DeclarationsCUDA Function Declarations
Only callable 

from the:
Executed 
on the:

hostdevice__global__ void  KernelFunc()

devicedevice__device__ float DeviceFunc()

hosthost__host__ float HostFunc()

• __global__ defines a kernel function
– Must return voidMust return void

• __device__ and __host__ can be 
used together
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CUDA Function Declarations (cont.)( )

• device functions cannot have their __ __
address taken

• For functions executed on the device:• For functions executed on the device:
– No recursion

• Recursion supported since CUDA Toolkit 3 1• Recursion supported since CUDA Toolkit 3.1

– No static variable declarations inside the 
functionfunction

– No variable number of arguments
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Calling a Kernel Function – Thread Creationg

• A kernel function must be called with an execution 
configuration:configuration:

__global__ void KernelFunc(...);
di 3 Di G id(100 50) // 5000 th d bl kdim3 DimGrid(100, 50);    // 5000 thread blocks 
dim3 DimBlock(4, 8, 8);   // 256 threads per block 
size_t SharedMemBytes = 64; // 64 bytes of shared 

memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes

>>>(...);

• Any call to a kernel function is asynchronous from 
CUDA 1.0 on, explicit synch needed for blocking
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Example: vector additionExample: vector_addition

// compute vector sum c = a + b

Device Code

// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C)
{

int i threadId + blockDim * blockIdint i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

// initialization code
...
// Launch N/256 blocks of 256 threads each
vector_add<<< N/256, 256>>>(d_A, d_B, d_C);

}
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Example: vector additionExample: vector_addition

// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C)
{

int i threadId + blockDim * blockIdint i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

}

H t C dint main()
{

// initialization code

Host Code

...
// launch N/256 blocks of 256 threads each
vector_add<<< N/256, 256>>>(d_A, d_B, d_C);

}
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Example: Initialization code for  
vector_addition

// allocate and initialize host (CPU) memory
float *h A = *h B = ;float *h_A = …,   *h_B = …;

// allocate device (GPU) memory
float *d_A, *d_B, *d_C;
cudaMalloc( (void**) &d A N * sizeof(float));cudaMalloc( (void**) &d_A, N * sizeof(float));
cudaMalloc( (void**) &d_B, N * sizeof(float));
cudaMalloc( (void**) &d_C, N * sizeof(float));

// copy host memory to device// copy host memory to device
cudaMemcpy( d_A, h_A, N * sizeof(float), 

cudaMemcpyHostToDevice) );
cudaMemcpy( d_B, h_B, N * sizeof(float), 

cudaMemcpyHostToDevice) );py ) );

// launch N/256 blocks of 256 threads each
vector_add<<<N/256, 256>>>(d_A, d_B, d_C);
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Running Example: Matrix Multiplicationg p p

• A simple matrix multiplication example that p p p
illustrates the basic features of memory and 
thread management in CUDA programs
– Leave shared memory usage until later

– Local, register usage

– Thread ID usage

– Memory data transfer API between host and 
device

– Assume square matrix for simplicity

77
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Programming Model:
Square Matrix Multiplication ExampleSquare Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH N

• Without tiling:
– One thread calculates one 

W
ID

T
H

element of P
– M and N are loaded WIDTH times

from global memory

W

from global memory
M P

W
ID

T
H
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Memory Layout of a Matrix in C
M2,0M1,0M0,0 M3,0

Memory Layout of a Matrix in C

M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

MM M MM1,3M0,3 M2,3 M3,3

M

MMM M MM M M MM M M MM M M

M

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3
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Matrix Multiplication
A Simple Host Version in Cp

N

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width) 
{   

ID
T

H

for (int i = 0; i < Width; ++i) 
for (int j = 0; j < Width; ++j) {

double sum = 0;
f (i t k 0 k Width k) {

k

j

W
Ifor (int k = 0; k < Width; ++k) {

double a = M[i * width + k];
double b = N[k * width + j];
sum += a * b;

M P

sum += a * b;
}
P[i * Width + j] = sum;

}
i

W
ID

T
H

}
}

k
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Step 1: Input Matrix Data Transfer
(Host-side Code)

void MatrixMulOnDevice(float* M, float* N, float* P, int Width) 
{

int size = Width * Width * sizeof(float);

(Host side Code)

int size = Width  Width  sizeof(float); 
float *Md, *Nd, *Pd;
…

1. // Allocate and Load M, N to device memory1. // Allocate and Load M, N to device memory 
cudaMalloc(&Md, size);
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device
cudaMalloc(&Pd, size);
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Step 3: Output Matrix Data Transfer
(H t id C d )(Host-side Code)

2.   // Kernel invocation code – to be shown later
…

3.    // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}
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Step 2: Kernel Functionp

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;float Pvalue = 0;
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Step 2: Kernel Function  (cont.)

Nd

p ( )
for (int k = 0; k < Width; ++k) {

float Melement = Md[threadIdx.y*Width+k];

D
T

H

float Nelement = Nd[k*Width+threadIdx.x];
Pvalue += Melement * Nelement;

}

k

W
ID

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

tx

Md Pd

tyty

W
ID

T
H

tx
k
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Step 2: Kernel Invocation
(H t id C d )(Host-side Code) 

// Setup the execution configuration// Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);, ( , , , );
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Only One Thread Block UsedOnly One Thread Block Used
• One Block of threads computes 

matrix Pd
Each thread computes one

Grid 1
Block 1

2

Nd

– Each thread computes one 
element of Pd

• Each thread
– Loads a row of matrix Md

4

2

6

Thread
(2, 2) 

Loads a row of matrix Md
– Loads a column of matrix Nd
– Performs one multiply and 

addition for each pair of Md and 

6

Nd elements
– Compute to off-chip memory 

access ratio close to 1:1 (not very 
high) 

3 2 5 4 48
g )

• Size of matrix limited by the 
number of threads allowed in a 
thread block

WIDTH

Md Pd
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Handling Arbitrary Sized Square Matrices 
( ill l t )(will cover later)

• Have each 2D thread block to Nd
compute a (TILE_WIDTH)2 sub-
matrix (tile) of the result matrix

E h h (TILE WIDTH)2 h d

D
T

H

– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of 
(WIDTH/TILE WIDTH)2 blocks

W
ID

(WIDTH/TILE_WIDTH)2 blocks
Md Pd

byYou still need to put a loop 
around the kernel call for cases 

W
ID

T
Hty

txbx

where WIDTH/TILE_WIDTH 
is greater than max grid size 
(64K)!

TILE_WIDTH
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Some Useful Information on 
Tools

Download CUDA Toolkit 8.0
https://developer.nvidia.com/cuda-downloads
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Compilation
• Any source file containing CUDA language 

extensions must be compiled with NVCC
• NVCC is a compiler driver

– Works by invoking all the necessary tools and 
compilers like cudacc g++ clcompilers like cudacc, g++, cl, ...

• NVCC outputs:
C code (host CPU Code)– C code (host CPU Code)
• Must then be compiled with the rest of the 

application using another tool
– PTX (Parallel Thread eXecution)

• Object code directly
O PTX i d i
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• Or, PTX source, interpreted at runtime
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