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Project Proposal
• Dataset

– How many instances
• Classes (or what is being predicted)
• Inputs

– Include feature extraction, if needed
– If your inputs are images or financial data, this must 

be addressed 
• Methods

– At least one simple classifier (MLE with Gaussian 
model, Naïve Bayes, kNN)

– At least one advanced classifier (SVM, Boosting, 
Random Forest, CNN)
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Project Proposal

• Typical experiments
– Measure benefits due to advanced classifier 

compared to simple classifier
– Compare different classifier settings

• k in kNN
• Different SVM kernels
• AdaBoost vs. cascade
• Different CNN architectures

– Measure effects of amount of training data 
available

– Evaluate accuracy as a function of the degree of 
dimensionality reduction using PCA
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Project Proposal

• Email me a pdf with all these
• I must say “approved” in my response, 

otherwise address my comments and 
resubmit
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Overview

• Linear Regression
– Barber Ch. 17
– HTF Ch. 3
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Simple Linear Regression

• How does a single variable of interest 
relate to another (single) variable?
– Y = outcome variable (response, 

dependent...)
– X = explanatory variable (predictor, feature, 

independent...)

• Data: n pairs of continuous observations 
(X1,Y1) … (Xn,Yn)
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Example
• How does systolic blood pressure (SBP) relate to age?

• Graph suggests that Y relates to X in an approximately 
linear way
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Regression: Step by Step

1. Assume a linear model: Y = β0 + β1 X
2. Find the line which “best” fits the data, i.e. 

estimate parameters β0 and β1

3. Does variation in X help describe 
variation in Y ?

4. Check assumptions of model
5. Draw inferences and make predictions
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Straight-line Plots
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Assumptions of Linear Regression

• Five basic assumptions
1. Existence: for each fixed value of X, Y is 

a random variable with finite mean and 
variance

2. Independence: the set of Yi are 
independent random variables given Xi
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Assumptions of Linear Regression

3. Linearity: the mean value of Y is a linear 
function of X

|  ଵ
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Assumptions of Linear Regression

4. Homoscedasticity: the variance of Y is the 
same for any X

5. Normality: For each fixed value of X, Y 
has a normal distribution (by assumption 
4, σ2 does not depend on X)
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Formulation

• Yi are linear function of Xi plus some random 
error
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Linear Regression
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Estimating β0 and β1

• Find “best” line
• Criterion for “best”: estimate β0 and β1 to 

minimize:

• This is the residual sum of squares, sum of 
squares due to error, or sum of squares about 
regression line

• Least Squares estimator
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Rationale for LS Estimates

• 2 measures the “deviance” of Yi from the 
estimated model

• The “best” model is the one from which the data 
deviate the least
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Least Squares Estimators
• Taking derivatives with respect to β, we obtain

• The residual variance is
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Example: SBP/age data
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Using the Model

• Using the parameter estimates, our best guess 
for any Y given X is

• Hence at 

• Every regression line goes through ( , )
• Also
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Correlation and Regression Coefficient
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Example
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Example
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Example
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Example
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