CS 559: Machine Learning Fundamentals and Applications 5th Set of Notes

Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215

Project: Logistics

- Topics:
 - Based on class material
 - Focus on learning not feature extraction
 - Can be related to your research, but it has to be extended
 - Brain storm with me
- Email me before October 19
 - 1% per day penalty for not starting the conversation
- Has to be approved by me before October 26
 - Midterm is on October 12
- Present project in class on December 7 and 8
- Present poster in CS Department event (optional)
- Submit report by December 12 (tentative)
 - Final is most likely on December 14

Project Proposal

- Project title
- Data set(s)
- Project idea: What is the objective, what method(s) will be tested?
 - Must have simple methods to establish baseline accuracy (MLE with Gaussian class conditional densities, kNN)
 - Must have advanced methods
- Relevant papers
 - Optional, but recommended
- Software you plan to write and/or libraries you plan to use
- Experiments you plan to do

Potential Projects

- Object/person recognition
 - PCA: Eigenfaces, eigendogs, etc.
 - HOG vs. SIFT
 - Data: Caltech 101/256, PASCAL, MIT Labelme, Yale face database, ...
- Classification of general data
 - SVM
 - Boosting
 - Random forests
 - Data: UCI ML repository

Potential Projects

- Detection of facial features (eyes, mouth)
 - PCA
 - Boosting
 - Data: Yale face database, Labeled Faces in the Wild, BioID
- Terrain classification and object detection from 3D data
 - PCA
 - Invariant descriptors
 - Data: email me

Potential Projects

- Optical character recognition
- Spam filtering
- Stock price prediction
- kaggle.com competitions
- MORE !!!!

Project: Data Sets

- General
 - UCI ML repository: <u>http://archive.ics.uci.edu/ml/</u>
 - Google: <u>http://www.google.com/publicdata/directory</u>
 - dmoz
 <u>www.dmoz.org/Computers/Artificial Intelligence/Machine Learning/Datasets/</u>
 - Netflix Challenge: <u>http://www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html</u>
 - Kaggle <u>https://www.kaggle.com/competitions</u> and <u>https://www.kaggle.com/datasets</u>
- Text
 - Enron email dataset: <u>http://www.cs.cmu.edu/~enron/</u>
 - Web page classification: <u>http://www-2.cs.cmu.edu/~webkb/</u>
- Optical Character Recognition
 - Stanford dataset: <u>http://ai.stanford.edu/~btaskar/ocr/</u>
 - NIST dataset: <u>http://yann.lecun.com/exdb/mnist/</u>

Project: Data Sets

• Images

- Caltech 101: <u>http://www.vision.caltech.edu/Image_Datasets/Caltech101/</u>
- Caltech 256: <u>http://www.vision.caltech.edu/Image_Datasets/Caltech256/</u>
- MIT Labelme <u>http://labelme.csail.mit.edu/</u>
- PASCAL Visual Object Classes: <u>http://pascallin.ecs.soton.ac.uk/challenges/VOC/</u>
- Oxford buildings: <u>http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/index.html</u>
- ETH Computer Vision datasets: <u>http://www.vision.ee.ethz.ch/datasets/</u>
- ImageNet <u>http://www.image-net.org/</u>
- Scene classification http://lsun.cs.princeton.edu/2016/
- Face Images
 - Yale face database: <u>http://cvc.yale.edu/projects/yalefaces/yalefaces.html</u>
 - Labeled Faces in the Wild: <u>http://vis-www.cs.umass.edu/lfw/</u> see also <u>http://vis-www.cs.umass.edu/fddb/</u>
 - BioID with labeled facial features: <u>https://www.bioid.com/About/BioID-Face-Database</u>
 - <u>https://www.facedetection.com/datasets/</u>
- RGB-D data
 - University of Washington http://rgbd-dataset.cs.washington.edu/
 - Cornell <u>http://pr.cs.cornell.edu/sceneunderstanding/data/data.php</u>
 - NYU <u>http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html</u>
 - Princeton <u>http://rgbd.cs.princeton.edu/</u>

Overview

• A note on data normalization/scaling

- Principal Component Analysis (notes)
 - Intro
 - Singular Value Decomposition
- Dimensionality Reduction PCA in practice (Notes based on Carlos Guestrin's)
- Eigenfaces (notes by Srinivasa Narasimhan, CMU)

- Without scaling, attributes in greater numeric ranges may dominate
- Example: compare people using annual income (in dollars) and age (in years)

• The separating hyperplane

- Decision strongly depends on the first attribute
- What if the second is (more) important?

- Linearly scale features to [0, 1] interval using min and max values.
 - HOW?
 - Why don't I like it?
- Divide each feature by its standard deviation

• New points and separating hyperplane

• The second attribute plays a role

- Distance/similarity measure must be meaningful in feature space
 - This applies to most classifiers (not random forests)
- Normalized Euclidean distance

$$d(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{p} \frac{(x_i - y_i)^2}{\sigma_i^2}},$$

• Mahalanobis distance $d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T S^{-1}(\vec{x} - \vec{y})}.$

– Where S is the covariance matrix of the data

Mahalanobis Distance

- Introduced as a distance between a point x and a distribution D
- Measures how many standard deviations away x is from the mean of D
- Generalized as distance between two points
- Unitless
- Takes into account correlations in data – E.g.

Principal Component Analysis (PCA)

PCA Resources

- A Tutorial on Principal Component Analysis
 - by Jonathon Shlens (Google Research), 2014
 - http://arxiv.org/pdf/1404.1100.pdf
- Singular Value Decomposition Tutorial
 - by Michael Elad (Technion, Israel), 2005
 - http://webcourse.cs.technion.ac.il/234299/Spring2005/ho/ WCFiles/Tutorial7.ppt
- Dimensionality Reduction (lecture notes)
 - by Carlos Guestrin (CMU, now at UW), 2006
 - http://www.cs.cmu.edu/~guestrin/Class/10701-S06/Slides/tsvms-pca.pdf

A Tutorial on Principal Component Analysis

Jonathon Shlens

A Toy Problem

- Ball of mass *m* attached to massless, frictionless spring
- Ball moved away from equilibrium results in spring oscillating indefinitely along *x*-axis
- All dynamics are a function of a single variable x

- We do not know which or how many axes and dimensions are important to measure
- Place three video cameras that capture 2-D measurements at 120Hz
 - Camera optical axes are not orthogonal to each other
- If we knew what we need to measure, one camera measuring displacement along *x* would be sufficient

Goal of PCA

- Compute the most meaningful basis to re-express a noisy data set
- Hope that this new basis will filter out the noise and reveal hidden structure
- In toy example:
 - Determine that the dynamics are along a single axis
 - Determine the important axis

Naïve Basis

• At each point in time, record 2 coordinates of ball position in each of the 3 images

$$\vec{X} = \begin{bmatrix} x_A \\ y_A \\ x_B \\ y_B \\ x_C \\ y_C \end{bmatrix}$$

- After 10 minutes at 120Hz, we have 10×60×120=7200 6D vectors
- These vectors can be represented in arbitrary coordinate systems
- Naïve basis is formed by the image axis
 - Reflects the method wich gathered the data

Change of Basis

- PCA: Is there another basis, which is a linear combination of the original basis, that best re-expresses our data set?
- Assumption: *linearity*
 - Restricts set of potential bases
 - Implicitly assumes continuity in data (superposition and interpolation are possible)

Change of Basis

- X is original data (m×n, m=6, n=7200)
- Let Y be another m×n matrix such that Y=PX
- P is a matrix that transforms X into Y
 - Geometrically it is a rotation and stretch
 - The rows of P {p₁,..., p_m} are the new basis vectors for the columns of X
 - Each element of y_i is a dot product of x_i with the corresponding row of P (a projection of x_i onto p_j)

$$\mathbf{PX} = \begin{bmatrix} \mathbf{p}_{1} \\ \vdots \\ \mathbf{p}_{m} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \cdots \mathbf{x}_{n} \end{bmatrix} \qquad \mathbf{y}_{i} = \begin{bmatrix} \mathbf{p}_{1} \cdot \mathbf{x}_{i} \\ \vdots \\ \mathbf{p}_{m} \cdot \mathbf{x}_{1} \cdots \mathbf{p}_{1} \cdot \mathbf{x}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{p}_{m} \cdot \mathbf{x}_{1} \cdots \mathbf{p}_{m} \cdot \mathbf{x}_{n} \end{bmatrix}$$

How to find an Appropriate Change of Basis?

- The row vectors {p₁,..., p_m} will become the *principal* components of X
- What is the best way to re-express X?
- What features would we like Y to exhibit?
- If we call X "garbled data", garbling in a linear system can refer to three things:
 - Noise
 - Rotation
 - Redundancy

Noise and Rotation

- Measurement noise in any data set must be low or else, no matter the analysis technique, no information about a system can be extracted
- Signal-to-Noise Ratio (SNR)

$$SNR = \frac{\sigma_{signal}^2}{\sigma_{noise}^2}$$

- Ball travels in straight line
 Any deviation must be noise
- Variance due to signal and noise are indicated in diagram
- SNR: ratio of the two lengths

 "Fatness" of data corresponds to noise
- Assumption: directions of largest variance in measurement vector space contain dynamics of interest

- Neither x_A , not y_A however are directions with maximum variance
- Maximizing the variance corresponds to finding the appropriate rotation of the naive basis
- In 2D this is equivalent to finding best fitting line
 - How to generalize?

Redundancy

- Is it necessary to record 2 variables for the ball-spring system?
- Is it necessary to use 3 cameras?

Redundancy spectrum for 2 variables

Covariance Matrix

- Assume zero-mean measurements
 - Subtract mean from all vectors in X
- Each column of X is a set of measurements at a point in time
- Each row of X corresponds to all measurements of a particular type (e.g. x-coordinate in image B)
- Covariance matrix $C_X = XX^T$
- ijth element of C_X is the dot product between the ith measurement type and the jth measurement type
 - Covariance between two measurement types

Covariance Matrix

- Diagonal elements of C_X
 - Large \rightarrow interesting dynamics
 - − Small \rightarrow noise
- Off-diagonal elements of C_X
 - − Large → high redundancy
 - − Small \rightarrow low redundancy
- We wish to maximize signal and minimize redundancy
 - Off-diagonal elements should be zero
- C_Y must be diagonal

Sketch of Algorithm

- Pick vector in m-D space along which variance is maximal and save as p₁
- Pick another direction along which variance is maximized among directions perpendicular to p₁
- Repeat until m principal components have been selected
- From linear algebra: a square matrix can be diagonalized using its eigenvectors as new basis
- X is not square in general (m>n in our case), but C_x always is
- Solution: Singular Value Decomposition (SVD)

Singular Value Decomposition Tutorial

Michael Elad

Singular Value Decomposition

The eigenvectors of a matrix A form a basis for working with A

However, for rectangular matrices A (m x n), dim(A<u>x</u>) \neq dim(<u>x</u>) and the concept of eigenvectors does not exist

Note: here each row of A is a measurement in time and each column a measurement type

Yet, $A^T A$ (n x n) is a symmetric, real matrix (A is real) and therefore, there is an orthonormal basis of eigenvectors { u_{K} } for $A^T A$.

Consider the vectors $\{\underline{v}_{K}\}$

$$\underline{v}_k = \frac{\underline{A}\underline{u}_k}{\sqrt{\lambda_k}}$$

They are also orthonormal, since: $\underline{u}_{j}^{T} \mathbf{A}^{T} \mathbf{A} \underline{u}_{k} = \lambda_{k} \delta(k-j)$

Singular Value Decomposition

Since A^TA is positive semidefinite, its eigenvalues are non-negative $\{\lambda_k \ge 0\}$

Define the singular values of A as $\sigma_k = \sqrt{\lambda_k}$

and order them in a non-increasing order: $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n \ge 0$

Motivation: One can see, that if A itself is square and symmetric, then $\{\underline{u}_k, \sigma_k\}$ are the set of its own eigenvectors and eigenvalues.

For a general matrix A, assume $\{\sigma_1 \ge \sigma_2 \ge ... \sigma_R > 0 = \sigma_{r+1} = \sigma_{r+2} = ... = \sigma_n\}$.

$$\mathbf{A}\underline{u}_{k} = \mathbf{0} \cdot \underline{v}_{k}, \qquad k = r+1,...,n$$
$$\underline{u}_{k}^{(n \times 1)}; \quad \underline{v}_{k}^{(m \times 1)}$$

M. Elad, 2006

Singular Value Decomposition

Now we can write:

$$AUU^{T} = V\Sigma U^{T}$$
$$A^{(m \times n)} = V^{(m \times m)} \Sigma^{(m \times n)} U^{(n \times n)^{T}}$$
SVD: Example

Let us find the SVD for the matrix:
$$\mathbf{A} = \begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix}$$

In order to find V, we need to calculate eigenvectors of A^TA:

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} -1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

(5- λ)²-9=0; $\longrightarrow \lambda_{1,2} = \frac{10 \pm \sqrt{100 - 64}}{2} = 5 \pm 3 = 8, 2$

SVD: Example

The corresponding eigenvectors are found by:

$$\begin{bmatrix} 5-\lambda_{i} & 3\\ 3 & 5-\lambda_{i} \end{bmatrix} \underline{u}_{i} = 0$$

$$\begin{bmatrix} -3 & 3\\ 3 & -3 \end{bmatrix} \underline{u}_{1} = \begin{bmatrix} 0\\ 0 \end{bmatrix} \Rightarrow \underline{u}_{1} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\begin{bmatrix} 1\\ \sqrt{2} \end{bmatrix}$$

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \underline{u}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \underline{u}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

SVD: Example

Now, we obtain V and $\boldsymbol{\Sigma}$:

$$\mathbf{A}\underline{\mathbf{u}}_{1} = \boldsymbol{\sigma}_{1}\underline{\mathbf{v}}_{1} = \begin{bmatrix} -1 & 1\\ 2 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 0\\ 2\sqrt{2} \end{bmatrix} = 2\sqrt{2} \begin{bmatrix} 0\\ 1 \end{bmatrix} \qquad \underline{\mathbf{v}}_{1} = \begin{bmatrix} 0\\ 1 \end{bmatrix} \quad , \quad \boldsymbol{\sigma}_{1} = 2\sqrt{2};$$

$$\mathbf{A}\underline{\mathbf{u}}_{2} = \boldsymbol{\sigma}_{2}\underline{\mathbf{v}}_{2} = \begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} = \sqrt{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \underline{\mathbf{v}}_{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} , \quad \boldsymbol{\sigma}_{2} = \sqrt{2};$$

$$\mathbf{A}=\mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}: \begin{bmatrix} -1 & 1\\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2\sqrt{2} & 0\\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Dimensionality Reduction

Carlos Guestrin

Motivation: Dimensionality Reduction

- Input data may have thousands or millions of dimensions!
 - text data have thousands of words
 - image data have millions of pixels
- Dimensionality reduction: represent data with fewer dimensions
 - Easier learning fewer parameters
 - Visualization hard to visualize more than 3D or 4D
 - Discover "intrinsic dimensionality" of data for high dimensional data that is truly lower dimensional (e.g. identity of objects in image << number of pixels)

Feature Selection

- Given set of features X=<X₁,...,X_n>
- Some features are more important than others
- Approach: select subset of features to be used by learning algorithm
 - Score each feature (or sets of features)
 - Select set of features with best score

Greedy Forward Feature Selection

- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Select next best feature X_i
 - e.g., one that results in lowest error when learning with $F_t \cup \{X_i\}$
 - $-F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse

Greedy Backward Feature Selection

- Greedy heuristic:
 - Start from set of all features $F_0 = F$
 - Run learning algorithm for current set of features F_t
 - Select next worst feature X_i
 - e.g., one that results in lowest error when learning with $F_t \{X_i\}$
 - $-F_{t+1} \leftarrow F_t \{X_i\}$
 - Recurse

Lower Dimensional Projections

- How would this work for the ball-spring example?
- Rather than picking a subset of the features, we can derive new features that are combinations of existing features

Projection

- Given m data points: $x^{i} = (x_{1}^{i},...,x_{n}^{i}), i=1...m$
- Represent each point as a projection:

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$
 where: $\bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}^i$ and $z_j^i = \mathbf{x}^i \cdot \mathbf{u}_j$

 If k=n, then projected data are equivalent to original data

PCA

- PCA finds projection that minimizes reconstruction error
 - Reconstruction error: norm of distance between original and projected data
- Given k≤n, find (u₁,...,u_k) minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Error depends on k+1..n unused basis vectors

Basic PCA Algorithm

- Start from m×n data matrix X
 - *m* data points (samples over time)
 - *n* measurement types
- Re-center: subtract mean from each row of X
- Compute covariance matrix:
 - $-\Sigma = X_c^T X_c$

Note: Covariance matrix is $n \times n$ (measurement types) (But there may be exceptions)

- Compute eigenvectors and eigenvalues of $\boldsymbol{\Sigma}$
- Principal components: k eigenvectors with highest eigenvalues

SVD

- Efficiently finds top k eigenvectors

 Much faster than eigen-decomposition
- Write $X = V S U^T$
 - X: data matrix, one row per datapoint
 - V: weight matrix, one row per datapoint coordinates of xⁱ in eigen-space
 - S: singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_j of Σ
 - \mathbf{U}^{T} : singular vector matrix
 - in our setting each row is eigenvector v_i of Σ

Using PCA for Dimensionality Reduction

- Given set of features X=<X₁,...,X_n>
- Some features are more important than others
 - Reduce noise and redundancy
- Also consider:
 - Rotation
- Approach: Use PCA on X to select a few important features
- Then, apply a classification technique in reduced space

Eigenfaces (notes by Srinivasa Narasimhan, CMU)

Eigenfaces

- Face detection and person identification using PCA
- Real time
- Insensitivity to small changes
- Simplicity
- Limitations
 - Only frontal faces one pose per classifier
 - No invariance to scaling, rotation or translation

Space of All Faces

- An image is a point in a high dimensional space
 - An N x M image is a point in $\mathsf{R}^{\mathsf{N}\mathsf{M}}$
 - We can define vectors in this space as we did in the 2D case

Key Idea

- Images in the possible set $\chi = {\hat{x}_{RL}^P}$ are highly correlated
- So, compress them to a low-dimensional subspace that captures key appearance characteristics of the visual DOFs

• EIGENFACES [Turk and Pentland]: USE PCA

Eigenfaces

Eigenfaces look somewhat like generic faces

S. Narasimhan

Linear Subspaces

convert x into v_1 , v_2 coordinates

$$\mathbf{x} \to ((\mathbf{x} - \overline{x}) \cdot \mathbf{v}_1, (\mathbf{x} - \overline{x}) \cdot \mathbf{v}_2)$$

What does the v_2 coordinate measure?

- distance to line
- use it for classification—near 0 for orange pts

What does the v_1 coordinate measure?

- position along line
- use it to specify which orange point it is

- Classification can be expensive
 - Must either search (e.g., nearest neighbors) or store large probability density functions.
- Suppose the data points are arranged as above
 - Idea—fit a line, classifier measures distance to line

Dimensionality Reduction

- Dimensionality reduction
 - We can represent the orange points with *only* their v_1 coordinates
 - since v₂ coordinates are all essentially 0
 - This makes it much cheaper to store and compare points
 - A bigger deal for higher dimensional problems

S. Narasimhan

Linear Subspaces

58

Higher Dimensions

- Suppose each data point is N-dimensional
 - Same procedure applies:

$$\begin{aligned} var(\mathbf{v}) &= \sum_{\mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\| \\ &= \mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} \text{ where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \end{aligned}$$

- The eigenvectors of A define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among training vectors \boldsymbol{x}
 - eigenvector with smallest eigenvalue has least variation
- We can compress the data by only using the top few eigenvectors
 - corresponds to choosing a "linear subspace"
 - represent points on a line, plane, or "hyper-plane"
 - these eigenvectors are known as the *principal components*

Problem: Size of Covariance Matrix A

- Suppose each data point is N-dimensional (N pixels)
 - The size of covariance matrix A is N^2
 - The number of eigenfaces is N
 - Example: For N = 256 x 256 pixels,
 Size of A will be 65536 x 65536 !
 Number of eigenvectors will be 65536 !

Typically, only 20-30 eigenvectors suffice. So, this method is very inefficient!

Efficient Computation of Eigenvectors

If B is MxN and M<<N then $A=B^TB$ is NxN >> MxM

- M \rightarrow number of images, N \rightarrow number of pixels
- use BB^T instead, eigenvector of BB^T is easily converted to that of B^TB

 $(BB^{T}) y = e y$ => $B^{T}(BB^{T}) y = e (B^{T}y)$ => $(B^{T}B)(B^{T}y) = e (B^{T}y)$

 \Rightarrow B^Ty is the eigenvector of B^TB

Eigenfaces - summary in words

• Eigenfaces are

the eigenvectors of the covariance matrix of the probability distribution of the vector space of human faces

- Eigenfaces are the 'standardized face ingredients' derived from the statistical analysis of many pictures of human faces
- A human face may be considered to be a combination of these standardized faces

Generating Eigenfaces - in words

- 1. Large set of images of human faces is taken
- 2. The images are normalized to line up the eyes, mouths and other features
- 3. The eigenvectors of the covariance matrix of the face image vectors are then extracted
- 4. These eigenvectors are called eigenfaces

Eigenfaces for Face Recognition

- When properly weighted, eigenfaces can be summed together to create an approximate grayscale rendering of a human face.
- Remarkably few eigenvector terms are needed to give a fair likeness of most people's faces.
- Hence eigenfaces provide a means of applying <u>data</u> <u>compression</u> to faces for identification purposes.

Dimensionality Reduction

The set of faces is a "subspace" of the set of images

- Suppose it is K dimensional
- We can find the best subspace using PCA
- This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors v₁, v₂, ..., v_K

Any face: $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \ldots + a_k \mathbf{v_k}$

Eigenfaces

- PCA extracts the eigenvectors of A
 - Gives a set of vectors v_1 , v_2 , v_3 , ...
 - Each one of these vectors is a direction in face space
 - what do these look like?

Projecting onto the Eigenfaces

- The eigenfaces $v_1, ..., v_K$ span the space of faces
 - A face is converted to eigenface coordinates by

 $a_1\mathbf{v_1}$ $a_2\mathbf{v_2}$ $a_3\mathbf{v_3}$ $a_4\mathbf{v_4}$ $a_5\mathbf{v_5}$ $a_6\mathbf{v_6}$ $a_7\mathbf{v_7}$ $a_8\mathbf{v_8}$

 \mathbf{X}

S. Narasimhan

Is this a face or not?

Figure 1: High-level functioning principle of the eigenface-based facial recognition algorithm 68

Recognition with Eigenfaces

- Algorithm
 - 1. Process the image database (set of images with labels)
 - Run PCA–compute eigenfaces
 - Calculate the K coefficients for each image
 - 2. Given a new image (to be recognized) **x**, calculate K coefficients
 - 3. Detect if x is a face

$$\mathbf{x} \rightarrow (a_1, a_2, \dots, a_K)$$

4. If it is a face, who is it?

 $\|\mathbf{x} - (\mathbf{\overline{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \text{threshold}$

- Find closest labeled face in database
 - nearest-neighbor in K-dimensional space

Key Property of Eigenspace Representation

Given

- 2 images x_1 , x_2 that are used to construct the Eigenspace
- g_1 is the eigenspace projection of image x_1
- g_2 is the eigenspace projection of image x_2

Then,

$$||g_2 - g_1|| \approx ||x_2 - x_1||$$

That is, distance in Eigenspace is approximately equal to the distance between original images

Choosing the Dimension K

- How many eigenfaces to use?
- Look at the decay of the eigenvalues
 - the eigenvalue tells you the amount of variance "in the direction" of that eigenface
 - ignore eigenfaces with low variance

Results

- Face detection using sliding window
 - Dark: small distance
 - Bright: large distance
Results

- Reconstruction of corrupted image
 - Project on eigenfaces and compute weights
 - Take weighted sum of eigenfaces to synthesize face image

Results

- Left: query
- Right: best match from database

Results

 Each new image is reconstructed with one additional eigenface