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Project: Logistics
• Topics:

– Based on class material
– Focus on learning not feature extraction
– Can be related to your research, but it has to be extended
– Brain storm with me

• Email me before October 19
– 1% per day penalty for not starting the conversation

• Has to be approved by me before October 26
– Midterm is on October 12

• Present project in class on December 7 and 8 
• Present poster in CS Department event (optional)
• Submit report by December 12 (tentative) 

– Final is most likely on December 14
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Project Proposal
• Project title
• Data set(s)
• Project idea: What is the objective, what method(s) 

will be tested?
– Must have simple methods to establish baseline 

accuracy (MLE with Gaussian class conditional 
densities, kNN)

– Must have advanced methods
• Relevant papers 

– Optional, but recommended
• Software you plan to write and/or libraries you plan 

to use
• Experiments you plan to do
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Potential Projects

• Object/person recognition
– PCA: Eigenfaces, eigendogs, etc.
– HOG vs. SIFT
– Data: Caltech 101/256, PASCAL, MIT Labelme, 

Yale face database, …
• Classification of general data

– SVM
– Boosting
– Random forests
– Data: UCI ML repository
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Potential Projects

• Detection of facial features (eyes, mouth)
– PCA
– Boosting
– Data: Yale face database, Labeled Faces in the 

Wild, BioID
• Terrain classification and object detection 

from 3D data
– PCA
– Invariant descriptors
– Data: email me

5



Potential Projects

• Optical character recognition
• Spam filtering
• Stock price prediction

• kaggle.com competitions

• MORE !!!!
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Project: Data Sets
• General 

– UCI ML repository: http://archive.ics.uci.edu/ml/
– Google: http://www.google.com/publicdata/directory
– dmoz

www.dmoz.org/Computers/Artificial_Intelligence/Machine_Learning/Datasets/
– Netflix Challenge: http://www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html
– Kaggle https://www.kaggle.com/competitions and 

https://www.kaggle.com/datasets
• Text

– Enron email dataset: http://www.cs.cmu.edu/~enron/
– Web page classification: http://www-2.cs.cmu.edu/~webkb/

• Optical Character Recognition
– Stanford dataset: http://ai.stanford.edu/~btaskar/ocr/
– NIST dataset: http://yann.lecun.com/exdb/mnist/
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Project: Data Sets
• Images

– Caltech 101: http://www.vision.caltech.edu/Image_Datasets/Caltech101/
– Caltech 256: http://www.vision.caltech.edu/Image_Datasets/Caltech256/
– MIT Labelme http://labelme.csail.mit.edu/
– PASCAL Visual Object Classes: http://pascallin.ecs.soton.ac.uk/challenges/VOC/
– Oxford buildings: http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/index.html
– ETH Computer Vision datasets: http://www.vision.ee.ethz.ch/datasets/
– ImageNet http://www.image-net.org/
– Scene classification http://lsun.cs.princeton.edu/2016/

• Face Images
– Yale face database: http://cvc.yale.edu/projects/yalefaces/yalefaces.html
– Labeled Faces in the Wild: http://vis-www.cs.umass.edu/lfw/ see also 

http://vis-www.cs.umass.edu/fddb/
– BioID with labeled facial features: https://www.bioid.com/About/BioID-Face-Database
– https://www.facedetection.com/datasets/

• RGB-D data
– University of Washington http://rgbd-dataset.cs.washington.edu/
– Cornell http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
– NYU http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
– Princeton http://rgbd.cs.princeton.edu/
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Overview

• A note on data normalization/scaling

• Principal Component Analysis (notes)
– Intro
– Singular Value Decomposition

• Dimensionality Reduction - PCA in practice (Notes 
based on Carlos Guestrin’s)

• Eigenfaces (notes by Srinivasa Narasimhan, CMU)
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Data Scaling

• Without scaling, attributes in greater 
numeric ranges may dominate

• Example: compare people using annual 
income (in dollars) and age (in years)
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Data Scaling
• The separating hyperplane

• Decision strongly depends on the first 
attribute

• What if the second is (more) important?
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Data Scaling
• Linearly scale features to [0, 1] interval 

using min and max values. 
– HOW?
– Why don’t I like it?

• Divide each feature by its standard 
deviation
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Data Scaling

• New points and separating hyperplane

• The second attribute plays a role
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Data Scaling
• Distance/similarity measure must be 

meaningful in feature space
– This applies to most classifiers (not random 

forests)
• Normalized Euclidean distance

• Mahalanobis distance

– Where S is the covariance matrix of the data
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Mahalanobis Distance

• Introduced as a distance between a point x 
and a distribution D

• Measures how many standard deviations 
away x is from the mean of D

• Generalized as distance between two 
points

• Unitless
• Takes into account correlations in data

– E.g. 
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Principal Component Analysis
(PCA)
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PCA Resources

• A Tutorial on Principal Component Analysis
– by Jonathon Shlens (Google Research), 2014
– http://arxiv.org/pdf/1404.1100.pdf

• Singular Value Decomposition Tutorial 
– by Michael Elad (Technion, Israel), 2005
– http://webcourse.cs.technion.ac.il/234299/Spring2005/ho/

WCFiles/Tutorial7.ppt

• Dimensionality Reduction (lecture notes)
– by Carlos Guestrin (CMU, now at UW), 2006
– http://www.cs.cmu.edu/~guestrin/Class/10701-

S06/Slides/tsvms-pca.pdf
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A Tutorial on Principal 
Component Analysis

Jonathon Shlens
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A Toy Problem

• Ball of mass m attached to massless, frictionless spring
• Ball moved away from equilibrium results in spring 

oscillating indefinitely along x-axis
• All dynamics are a function of a single variable x
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• We do not know which or how many axes and 
dimensions are important to measure

• Place three video cameras that capture 2-D 
measurements at 120Hz
– Camera optical axes are not orthogonal to each other

• If we knew what we need to measure, one camera 
measuring displacement along x would be sufficient
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Goal of PCA

• Compute the most meaningful basis to re-express a 
noisy data set

• Hope that this new basis will filter out the noise and 
reveal hidden structure

• In toy example: 
– Determine that the dynamics are along a single axis
– Determine the important axis
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Naïve Basis
• At each point in time, record 2 coordinates of ball position in 

each of the 3 images

• After 10 minutes at 120Hz, we have 10×60×120=7200 6D 
vectors

• These vectors can be represented in arbitrary coordinate 
systems

• Naïve basis is formed by the image axis
– Reflects the method wich gathered the data 
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Change of Basis

• PCA: Is there another basis, which is a linear 
combination of the original basis, that best re-expresses 
our data set?

• Assumption: linearity
– Restricts set of potential bases
– Implicitly assumes continuity in data (superposition and 

interpolation are possible)
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Change of Basis
• X is original data (m×n, m=6, n=7200)
• Let Y be another m×n matrix such that Y=PX
• P is a matrix that transforms X into Y

– Geometrically it is a rotation and stretch
– The rows of P {p1,…, pm} are the new basis vectors for the 

columns of X
– Each element of yi is a dot product of xi with the corresponding 

row of P (a projection of xi onto pj)
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How to find an
Appropriate Change of Basis?

• The row vectors {p1,…, pm} will become the principal 
components of X

• What is the best way to re-express X?
• What features would we like Y to exhibit?

• If we call X “garbled data”, garbling in a linear system 
can refer to three things:
– Noise
– Rotation
– Redundancy

25J. Shlens



Noise and Rotation

• Measurement noise in any data set must be low or else, 
no matter the analysis technique, no information about a 
system can be extracted

• Signal-to-Noise Ratio (SNR)
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• Ball travels in straight line
– Any deviation must be noise

• Variance due to signal and
noise are indicated in diagram

• SNR: ratio of the two lengths
– “Fatness” of data corresponds to noise

• Assumption: directions of largest variance in 
measurement vector space contain dynamics 
of interest
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• Neither xA, not yA
however are directions
with maximum variance

• Maximizing the variance corresponds to 
finding the appropriate rotation of the naive 
basis

• In 2D this is equivalent to finding best fitting 
line
– How to generalize?

28J. Shlens



Redundancy
• Is it necessary to record 2 variables for the ball-spring 

system?
• Is it necessary to use 3 cameras?

Redundancy spectrum for 2 variables
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Covariance Matrix

• Assume zero-mean measurements
– Subtract mean from all vectors in X

• Each column of X is a set of measurements at a point in 
time

• Each row of X corresponds to all measurements of a 
particular type (e.g. x-coordinate in image B)

• Covariance matrix CX=XXT

• ijth element of CX is the dot product between the ith
measurement type and the jth measurement type
– Covariance between two measurement types
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Covariance Matrix

• Diagonal elements of CX
– Large  interesting dynamics
– Small  noise

• Off-diagonal elements of CX
– Large  high redundancy
– Small  low redundancy

• We wish to maximize signal and minimize redundancy
– Off-diagonal elements should be zero

• CY must be diagonal

31J. Shlens



Sketch of Algorithm
• Pick vector in m-D space along which variance is 

maximal and save as p1

• Pick another direction along which variance is 
maximized among directions perpendicular to p1

• Repeat until m principal components have been selected

• From linear algebra: a square matrix can be diagonalized
using its eigenvectors as new basis

• X is not square in general (m>n in our case), but Cx
always is

• Solution: Singular Value Decomposition (SVD)
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Singular Value Decomposition 
Tutorial 

Michael Elad
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The eigenvectors of a matrix A form a basis for working with A

However, for rectangular matrices A (m x n), dim(Ax) ≠ dim(x) and the 
concept of eigenvectors does not exist

Yet, ATA (n x n) is a symmetric, real matrix (A is real) and therefore, there 
is an orthonormal basis of eigenvectors {uK} for ATA.

Consider the vectors {vK}

They are also orthonormal, since:

Singular Value Decomposition
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M. Elad, 2006

Note: here each row of A is a measurement in time 
and each column a measurement type
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Singular Value Decomposition
Since ATA is positive semidefinite, its eigenvalues are non-negative {λk≥0}

Define the singular values of A as

and order them in a non-increasing order:

Motivation: One can see, that if A itself is square and symmetric, 

then {uk, σk} are the set of its own eigenvectors and eigenvalues.

For a general matrix A, assume {σ1 ≥ σ2 ≥…σR >0=σr+1 =σr+2 =…=σn }.
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Now we can write:
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Let us find the SVD for the matrix:

In order to find V, we need to calculate eigenvectors of ATA:
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The corresponding eigenvectors are found by:

0u
53

35
i

i

i 











SVD: Example








































2
1
2

1

u
0
0

u
33

33
11





































2
1

2
1

0
0

33
33

22 uu

M. Elad, 2006



39

Now, we obtain V and Σ :

A=VΣUT:
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Dimensionality Reduction

Carlos Guestrin
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Motivation: Dimensionality Reduction

• Input data may have thousands or millions of 
dimensions!
– text data have thousands of words
– image data have millions of pixels

• Dimensionality reduction: represent data with 
fewer dimensions
– Easier learning – fewer parameters
– Visualization – hard to visualize more than 3D or 4D
– Discover “intrinsic dimensionality” of data for high 

dimensional data that is truly lower dimensional (e.g. 
identity of objects in image << number of pixels)

C. Guestrin 41



Feature Selection

• Given set of features X=<X1,…,Xn>
• Some features are more important than 

others

• Approach: select subset of features to be 
used by learning algorithm
– Score each feature (or sets of features)
– Select set of features with best score

C. Guestrin 42



Greedy Forward Feature Selection

• Greedy heuristic:
– Start from empty (or simple) set of features F0 = Ø
– Run learning algorithm for current set of features 

Ft

– Select next best feature Xi
• e.g., one that results in lowest error when learning with 

– Ft+1 
– Recurse

C. Guestrin 43



Greedy Backward Feature Selection

• Greedy heuristic:
– Start from set of all features F0 = F
– Run learning algorithm for current set of 

features Ft

– Select next worst feature Xi

• e.g., one that results in lowest error when learning 
with Ft - {Xi}

– Ft+1 Ft - {Xi}
– Recurse

C. Guestrin 44



Lower Dimensional Projections

• How would this work for the ball-spring 
example?

• Rather than picking a subset of the 
features, we can derive new features that 
are combinations of existing features

C. Guestrin 45



Projection

• Given m data points: xi = (x1
i,…,xn

i), i=1…m
• Represent each point as a projection:

• If k=n, then projected data are equivalent 
to original data

C. Guestrin 46



PCA

• PCA finds projection that minimizes 
reconstruction error
– Reconstruction error: norm of distance between 

original and projected data
• Given k≤n, find (u1,…,uk) minimizing 

reconstruction error:

• Error depends on k+1..n unused basis 
vectors

C. Guestrin 47



Basic PCA Algorithm

• Start from m×n data matrix X
– m data points (samples over time)
– n measurement types 

• Re-center: subtract mean from each row of X
• Compute covariance matrix:

– Σ=Xc
T Xc

• Compute eigenvectors and eigenvalues of Σ
• Principal components: k eigenvectors with 

highest eigenvalues

C. Guestrin 48

Note: Covariance matrix is n×n (measurement types)
(But there may be exceptions)



SVD

• Efficiently finds top k eigenvectors 
– Much faster than eigen-decomposition

• Write X = V S UT

– X: data matrix, one row per datapoint
– V: weight matrix, one row per datapoint –

coordinates of xi in eigen-space
– S: singular value matrix, diagonal matrix

• in our setting each entry is eigenvalue λj of Σ
– UT: singular vector matrix

• in our setting each row is eigenvector vj of Σ

C. Guestrin 49



Using PCA for Dimensionality Reduction
• Given set of features X=<X1,…,Xn>
• Some features are more important than 

others 
– Reduce noise and redundancy

• Also consider:
– Rotation

• Approach: Use PCA on X to select a few 
important features

• Then, apply a classification technique in 
reduced space

C. Guestrin 50



Eigenfaces
(notes by  Srinivasa Narasimhan, 

CMU)
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Eigenfaces

• Face detection and person identification 
using PCA

• Real time
• Insensitivity to small changes
• Simplicity

• Limitations
– Only frontal faces – one pose per classifier
– No invariance to scaling, rotation or 

translation

S. Narasimhan 52



Space of All Faces

S. Narasimhan 53

• An image is a point in a high dimensional space
– An N x M image is a point in RNM

– We can define vectors in this space as we did in the 2D case

+=



Key Idea

S. Narasimhan 54

}ˆ{ P
RLx• Images in the possible set                   are highly correlated

• So, compress them to a low-dimensional subspace that
captures key appearance characteristics of the visual DOFs

• EIGENFACES [Turk and Pentland]: USE PCA



Eigenfaces

S. Narasimhan 55

Eigenfaces look somewhat 
like generic faces



Linear Subspaces

• Classification can be expensive
– Must either search (e.g., nearest neighbors) or store large probability density functions.

• Suppose the data points are arranged as above
– Idea—fit a line, classifier measures distance to line

convert x into v1, v2 coordinates

What does the v2 coordinate measure?

What does the v1 coordinate measure?

- distance to line
- use it for classification—near 0 for orange pts

- position along line
- use it to specify which orange point it is

S. Narasimhan 56



Dimensionality Reduction

• Dimensionality reduction
– We can represent the orange points with only their v1 coordinates

• since v2 coordinates are all essentially 0
– This makes it much cheaper to store and compare points
– A bigger deal for higher dimensional problems

S. Narasimhan 57



Linear Subspaces

Consider the variation along direction v
among all of the orange points:

What unit vector v minimizes var?

What unit vector v maximizes var?

Solution: v1 is eigenvector of A with largest eigenvalue
v2 is eigenvector of A with smallest eigenvalue 58



Higher Dimensions

• Suppose each data point is N-dimensional
– Same procedure applies:

– The eigenvectors of A define a new coordinate system
• eigenvector with largest eigenvalue captures the most variation among 

training vectors x
• eigenvector with smallest eigenvalue has least variation

– We can compress the data by only using the top few 
eigenvectors

• corresponds to choosing a “linear subspace”
– represent points on a line, plane, or “hyper-plane”

• these eigenvectors are known as the principal components

S. Narasimhan 59



Problem: Size of Covariance Matrix A

• Suppose each data point is N-dimensional (N pixels)

– The size of covariance matrix A is N2

– The number of eigenfaces is N

– Example: For N = 256 x 256 pixels, 
Size of A will be 65536 x 65536 !
Number of eigenvectors will be 65536 !

Typically, only 20-30 eigenvectors suffice. So, this
method is very inefficient!

S. Narasimhan 60



If  B is  MxN and M<<N then A=BTB is NxN >> MxM

– M  number of images, N  number of pixels

– use BBT instead, eigenvector of BBT is easily
converted to that of BTB 

(BBT) y = e y
=>  BT(BBT) y = e (BTy)
=>  (BTB)(BTy) = e (BTy)
=>  BTy is the eigenvector of BTB

Efficient Computation of Eigenvectors

S. Narasimhan 61



Eigenfaces – summary in words

• Eigenfaces are 
the eigenvectors of
the covariance matrix of
the probability distribution of
the vector space of
human faces

• Eigenfaces are the ‘standardized face ingredients’ derived 
from the statistical analysis of many pictures of human 
faces

• A human face may be considered to be a combination of 
these standardized faces 

S. Narasimhan 62



Generating Eigenfaces – in words

1. Large set of images of human faces is taken
2. The images are normalized to line up the eyes, 

mouths and other features 
3. The eigenvectors of the covariance matrix of 

the face image vectors are then extracted
4. These eigenvectors are called eigenfaces

S. Narasimhan 63



Eigenfaces for Face Recognition

• When properly weighted, eigenfaces can be 
summed together to create an approximate gray-
scale rendering of a human face. 

• Remarkably few eigenvector terms are needed to 
give a fair likeness of most people's faces. 

• Hence eigenfaces provide a means of applying data 
compression to faces for identification purposes.

S. Narasimhan 64



Dimensionality Reduction

The set of faces is a “subspace” of the set 
of  images

– Suppose it is K dimensional

– We can find the best subspace using PCA

– This is like fitting a “hyper-plane” to the set of faces

• spanned by vectors v1, v2, ..., vK

Any face:

S. Narasimhan 65



Eigenfaces

• PCA extracts the eigenvectors of A
– Gives a set of vectors v1, v2, v3, ...
– Each one of these vectors is a direction in face space

• what do these look like?

66



Projecting onto the Eigenfaces

• The eigenfaces v1, ..., vK span the space of faces

– A face is converted to eigenface coordinates by

S. Narasimhan 67



Is this a face or not?

68



Recognition with Eigenfaces
• Algorithm

1. Process the image database (set of images with labels)
• Run PCA—compute eigenfaces
• Calculate the K coefficients for each image

2. Given a new image (to be recognized) x, calculate K coefficients

3. Detect if x is a face

4. If it is a face, who is it?

• Find closest labeled face in database
• nearest-neighbor in K-dimensional space

69S. Narasimhan



Key Property of Eigenspace Representation

Given 

• 2 images x1, x2 that are used to construct the Eigenspace

• g1 is the eigenspace projection of image x1

• g2 is the eigenspace projection of image x2

Then,

That is, distance in Eigenspace is approximately equal to the 
distance between original images

|||||||| 1212 xxgg 

S. Narasimhan 70



Choosing the Dimension K

K NMi = 

eigenvalues

• How many eigenfaces to use?

• Look at the decay of the eigenvalues
– the eigenvalue tells you the amount of variance “in the 

direction” of that eigenface
– ignore eigenfaces with low variance

71S. Narasimhan



Results

• Face detection using sliding window
– Dark: small distance
– Bright: large distance

72



Results

• Reconstruction of corrupted image 
– Project on eigenfaces and compute weights
– Take weighted sum of eigenfaces to synthesize face image

73



Results

C. DeCoro (Princeton) 74

• Left: query
• Right: best match from database



Results

• Each new image is reconstructed with 
one additional eigenface

75C. DeCoro (Princeton)


