
CS 559: Machine Learning 
Fundamentals and Applications

3rd Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215
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Overview

• Making Decisions

• Parameter Estimation
– Frequentist or Maximum Likelihood approach
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Expected Utility
• You are asked if you wish to take a bet on the outcome of 

tossing a fair coin. If you bet and win, you gain $100. If you 
bet and lose, you lose $200. If you don't bet, the cost to you is 
zero.

U(win, bet) = 100 U(lose, bet) = -200
U(win, no bet) = 0 U(lose, no bet) = 0

• Your expected winnings/losses are:
U(bet) = p(win)×U(win, bet) + p(lose)×U(lose, bet)
= 0.5×100 – 0.5×200 = -50

U(no bet) = 0

• Based on making the decision which maximizes expected 
utility, you would therefore be advised not to bet.

D. Barber (Ch. 7) 3



Flow of Lecture and Entire Course

• Making optimal decisions based on prior 
knowledge (prev. slide)

• Making optimal decisions based on 
observations and prior knowledge
– Given models of the underlying phenomena 

(last week and today)
– Given training data with observations and 

labels (most of the semester)
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Bayesian Decision Theory

Adapted from: 
Duda, Hart and Stork, Pattern Classification textbook
O. Veksler
E. Sudderth
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Bayes’ Rule

Pattern Classification, Chapter 2 6
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Bayes Rule - Intuition
The essence of the Bayesian approach is to 
provide a mathematical rule explaining how you 
should change your existing beliefs in the light of 
new evidence. 

In other words, it allows scientists to combine new 
data with their existing knowledge or expertise. 

From the Economist (2000)
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Bayes Rule - Intuition
The canonical example is to imagine that a precocious newborn 
observes his first sunset, and wonders whether the sun will rise 
again or not. He assigns equal prior probabilities to both 
possible outcomes, and represents this by placing one white 
and one black marble into a bag. The following day, when the 
sun rises, the child places another white marble in the bag. The 
probability that a marble plucked randomly from the bag will be 
white (ie, the child's degree of belief in future sunrises) has thus 
gone from a half to two-thirds. After sunrise the next day, the 
child adds another white marble, and the probability (and thus 
the degree of belief) goes from two-thirds to three-quarters. And 
so on. 

Gradually, the initial belief that the sun is just as likely as not to 
rise each morning is modified to become a near-certainty that 
the sun will always rise.

From the Economist (2000) 8



Bayesian Decision Theory

• Knowing the probability distribution of the 
categories

• We do not even need training data to 
design optimal classifiers

• Rare in real life

Pattern Classification, Chapter 2 9



Prior

• Prior comes from prior knowledge, no data 
have been seen yet

• If there is a reliable source of prior 
knowledge, it should be used

• Some problems cannot even be solved 
reliably without a good prior

• However prior alone is not enough, we still 
need likelihood

Pattern Classification, Chapter 2 10



Decision Rule based on Priors
• Model state of nature as a random variable, :

–  = 1 : the event that the next sample is from 
category 1

– P(1) = probability of category 1
– P(2) = probability of category 2
– P(1) + P(2) = 1

• Exclusivity: 1 and 2 share no events
• Exhaustivity: the union of all outcomes is the sample space 

(either 1 or 2 must occur)

• If all incorrect classifications have an equal cost:
Decide 1 if P(1) > P(2); otherwise, decide 2

11Pattern Classification, Chapter 2



Using Class-Conditional Information

• Use of the class–conditional information can 
improve accuracy 

• p(x | 1) and p(x | 2) describe the difference in 
feature x between category 1 and category 2

12Pattern Classification, Chapter 2



Class-conditional Density vs. 
Likelihood

• Class-conditional densities are probability 
density functions p(x| ) when class is 
fixed

• Likelihoods are values of p(x| ) for a 
given x

• This is a subtle point. Think about it.

Pattern Classification, Chapter 2 13
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Posterior, Likelihood, Evidence

– In the case of two categories 

– Posterior = (Likelihood × Prior) / Evidence

15Pattern Classification, Chapter 2
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Decision using Posteriors
• Decision given the posterior probabilities

X is an observation for which:

if P(1 | x) > P(2 | x) True state of nature = 1
if P(1 | x) < P(2 | x) True state of nature = 2

Therefore:
whenever we observe a particular x, the probability 

of error is :
P(error | x) = P(1 | x) if we decide 2
P(error | x) = P(2 | x) if we decide 1

16Pattern Classification, Chapter 2
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Probability of Error

• Minimizing the probability of error 

• Decide 1 if P(1 | x) > P(2 | x); 
otherwise decide 2

Therefore:
P(error | x) = min [P(1 | x), P(2 | x)]

(Bayes decision)

18Pattern Classification, Chapter 2



Decision Theoretic Classification

ω Ω: unknown class or category, finite set 
of options

x : observed data, can take values in any 
space

a A: action to chose one of the categories  
(or possibly to reject data)

L(ω,a): loss of action a given true class ω
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Loss Function

• The loss function states how costly each 
action taken is
– Opposite of Utility function: L = - U 

• Most common choice is the 0-1 loss

• In regression, square loss is the most 
common choice

L(ytrue ,ypred) = (ytrue -ypred)2

20



More General Loss Function

• Allowing actions other than classification 
primarily allows the possibility of rejection

• Refusing to make a decision in close or 
bad cases!

• The loss function still states how costly 
each action taken is

21Pattern Classification, Chapter 2



Notation

• Let {1, 2,…, c} be the set of c states of 
nature (or “categories”)

• Let {1, 2,…, a} be the set of possible 
actions

• Let (i | j) be the loss incurred for taking 
action i when the state of nature is j

22Pattern Classification, Chapter 2



Overall Risk
R = Sum of all R(i | x) for i = 1,…,a

Minimizing R           Minimizing R(i | x) for i = 1,…, a
(select action  that minimizes risk as a function of x)

for i = 1,…,a

Pattern Classification, Chapter 2 23
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Minimize Overall Risk

Select the action i for which R(i | x) is minimum

R is minimum and R in this case is called the 
Bayes risk = best performance that can be 
achieved

24Pattern Classification, Chapter 2



Conditional Risk

• Two-category classification
1 : decide 1

2 : decide 2

ij = (i | j)

loss incurred for deciding i when the true state of nature is j

Conditional risk:

R(1 | x) = 11P(1 | x) + 12P(2 | x)
R(2 | x) = 21P(1 | x) + 22P(2 | x) 

25Pattern Classification, Chapter 2



Decision Rule

Our rule is the following:
if R(1 | x) < R(2 | x)              
action 1: decide 1

This results in the equivalent rule :
decide 1 if:
(21- 11) P(x | 1) P(1) > (12- 22) P(x | 2) P(2)
and decide2 otherwise

26Pattern Classification, Chapter 2



Likelihood ratio

The preceding rule is equivalent to the following rule:

Then take action 1 (decide 1)
Otherwise take action 2 (decide 2)

27Pattern Classification, Chapter 2
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Optimal decision property

“If the likelihood ratio exceeds a threshold 
value independent of the input pattern x, we 
can take optimal actions”

28Pattern Classification, Chapter 2



Exercise

Select the optimal decision where:
 = {1, 2}

P(x | 1)                            N(2, 0.5) (Normal distribution)
P(x | 2)                            N(1.5, 0.2)

P(1) = 2/3
P(2) = 1/3

Pattern Classification, Chapter 2 29
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Minimum-Error-Rate Classification

• Actions are decisions on classes
If action i is taken and the true state of nature is j then:
the decision is correct if i = j and in error if i  j

• Seek a decision rule that minimizes the 
probability of error which is called the error 
rate

30Pattern Classification, Chapter 2



The Zero-one Loss Function
• Zero-one loss function:

Therefore, the conditional risk is: 

• The risk corresponding to this loss function is the 
average probability of error


31Pattern Classification, Chapter 2
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Minimum Error Rate Decision Rule

• Minimizing the risk requires maximizing 
P(i | x)
since R(i | x) = 1 – P(i | x)

• For Minimum error rate

– Decide i if P (i | x) > P(j | x) j  i

32Pattern Classification, Chapter 2



• Given the likelihood ratio and the zero-one loss function: 

• If  is the zero-one loss function which means:

33Pattern Classification, Chapter 2
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Classifiers, Discriminant Functions
and Decision Surfaces

• The multi-category case

– Set of discriminant functions gi(x), i = 1,…, c

– The classifier assigns a feature vector x to 
class i if: 

gi(x) > gj(x) j  i

35Pattern Classification, Chapter 2



Max Discriminant Functions
• Let gi(x) = - R(i | x)

(max. discriminant corresponds to min. risk)

• For the minimum error rate, we take 
gi(x) = P(i | x)

(max. discriminant corresponds to max. posterior)
gi(x)  P(x | i) P(i)

gi(x) = ln P(x | i) + ln P(i)
(ln: natural logarithm)

36Pattern Classification, Chapter 2



Decision Regions

• Feature space divided into c decision regions
if gi(x) > gj(x) j  i then x is in Ri

(Ri means assign x to i)

• The two-category case
– A classifier is a “dichotomizer” that has two 

discriminant functions g1 and g2

Let g(x)  g1(x) – g2(x)

Decide 1 if g(x) > 0 ; Otherwise decide 2

37Pattern Classification, Chapter 2



Computation of g(x)

38Pattern Classification, Chapter 2
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Discriminant Functions for the Normal 
Density

• Minimum error-rate classification can be 
achieved by the discriminant function

gi(x) = ln P(x | i) + ln P(i)

• Case of multivariate normal

39Pattern Classification, Chapter 2
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• Case i = 2I (I is the identity matrix)
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Prove it!
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Linear Machines

– A classifier that uses linear discriminant 
functions is called “a linear machine”

– The decision surfaces for a linear machine are 
pieces of hyperplanes defined by:

gi(x) = gj(x)

41Pattern Classification, Chapter 2
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– The hyperplane separating Ri and Rj

always orthogonal to the line linking the means

43Pattern Classification, Chapter 2
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• Case i =  (covariances of all classes 
are identical but arbitrary!)

– Hyperplane separating Ri and Rj

(the hyperplane separating Ri and Rj is 
generally not orthogonal to the line 
between the means)

45Pattern Classification, Chapter 2

 
).(

)()(
)(/)(ln

)(
2
1

10

1

ji
ji

t
ji

ji
ji

ii

PP
x

w






















46Pattern Classification, Chapter 2



47Pattern Classification, Chapter 2



• Case i = arbitrary

– The covariance matrices are different for each category

(Hyperquadrics which are: hyperplanes, pairs of 
hyperplanes, hyperspheres, hyperellipsoids, 
hyperparaboloids, hyperhyperboloids)

48Pattern Classification, Chapter 2
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Bayes Decision Theory – Discrete 
Features

• Components of x are binary or integer valued, x can 
take only one of m discrete values 

v1, v2, …, vm

• Case of independent binary features in 2 category 
problem

• Let x = [x1, x2, …, xd ]t where each xi is either 0 or 1, with 
probabilities:

pi = P(xi = 1 | 1)
qi = P(xi = 1 | 2)

51Pattern Classification, Chapter 2
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Exercise: DHS Problem 2.12
Let ωmax(x) be the state of nature for which 
P(ωmax|x)>=P(ωi|x) for all i=1,…,c
• Show that P(ωmax|x)>=1/c
• Show that for the minimum-error-rate decision 

rule the average probability of error is given by 

• Use these two results to show that 
P(error)≤ (c-1)/c

• Describe a situation for which P(error)=(c-1)/c

Pattern Classification, Chapter 3 54
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• Case i = 2I
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Discriminant Functions for the Normal 
Density
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Discriminant Function Example

O. Veksler 56



Discriminant Function Example

O. Veksler 57



Discriminant Function Example

O. Veksler 58



Discriminant Function Example

O. Veksler 59



Maximum-Likelihood & Bayesian 
Parameter Estimation

Adapted from: 
Duda, Hart and Stork, Pattern Classification textbook
O. Veksler
E. Sudderth
D. Batra

Pattern Classification, Chapter 3 60



Introduction

• We could design an optimal classifier if we 
knew:
– p(i) (priors)
– p(x | i) (class-conditional densities)
– Unfortunately, we rarely have this complete 

information!

• Design a classifier from training data

Pattern Classification, Chapter 3 61



Supervised Learning in a Nutshell

• Training Stage:
– Raw Data  x (Feature Extraction)
– Training Data { (x,y) }  f (Learning)

• Testing Stage
– Raw Data  x (Feature Extraction)
– Test Data x  f(x) (Apply function, Evaluate error)

(C) Dhruv Batra 62



Statistical Estimation View

• Probabilities to the rescue:
– x and y are random variables
– D = (x1,y1), (x2,y2), …, (xN,yN) ~ P(X,Y)

• IID: Independent Identically Distributed
– Both training & testing data sampled IID from 

P(X,Y)
– Learn on training set
– Have some hope of generalizing to test set

(C) Dhruv Batra 63



Parameter Estimation

• Use a priori information about the problem

• E.g.: Normality of p(x | i)

p(x | i) ~ N( i, i)

• Simplify problem
– From estimating unknown distribution function
– To estimating parameters 

Pattern Classification, Chapter 3 64



Why Gaussians?

• Why does the entire world seem to always 
be harping on about Gaussians?
– Central Limit Theorem!
– They’re easy (and we like easy)
– Closely related to squared loss (for 

regression)
– Mixture of Gaussians is sufficient to 

approximate many distributions

(C) Dhruv Batra 65



Some properties of Gaussians
• Affine transformation 

– multiplying by scalar and adding a constant
– X ~ N(,2)
– Y = aX + b  Y ~ N(a+b,a22)

• Sum of Independent Gaussians
– X ~ N(X,2

X)
– Y ~ N(Y,2

Y)
– Z = X+Y  Z ~ N(X+Y, 2

X+2
Y)

(C) Dhruv Batra 66



Estimation techniques
• Maximum-Likelihood (ML) and Bayesian 

estimation
• Results are often identical, but the approaches are 

fundamentally different

• Frequentist View
– limit N∞ #(A is true)/N
– limiting frequency of a repeating non-deterministic 

event

• Bayesian View
– P(A) is your “belief” about A

Pattern Classification, Chapter 3 67



Parameter Estimation
• Parameters in ML estimation are fixed but unknown!

• Best parameters are obtained by maximizing the 
probability of obtaining the samples observed

• Bayesian methods view the parameters as random 
variables having some known distribution

• In either approach, we use p(i | x) for our 
classification rule

Pattern Classification, Chapter 3 68



Independence Across Classes

• For each class i we have a proposed density 
pi(x| i) with unknown parameters θi which we 
need to estimate

• Since we assumed independence of data across 
the classes, estimation is an identical procedure 
for all classes

• To simplify notation, we drop sub-indexes and 
say that we need to estimate parameters θ for 
density p(x)

Pattern Classification, Chapter 2 69



Maximum-Likelihood Estimation

• Has good convergence properties as the 
sample size increases

• Simpler than alternative techniques

• General principle
– Assume c datasets (classes) D1, D2, …, Dc

drawn independently according to p(x| j)

Pattern Classification, Chapter 3 70



Maximum-Likelihood Estimation

• Assume that p(x| j) has known parametric 
form determined by parameter vector θj

• Further assume that Di gives no 
information about θj if i≠j
– Drop subscripts in remainder

Pattern Classification, Chapter 3 71



Likelihood

• Use set of independent samples to 
estimate p(D | ) 
– Let D = {x1, x2, …, xn}

– p(x1,…, xn | ) = p(xi | ); |D| = n

Our goal is to determine     (value of  that 
best agrees with observed training data)

• Note if D is fixed p(D| ) is not a density

Pattern Classification, Chapter 3 72
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Example: Gaussian case

• Assume we have c classes and
p(x | j) ~ N( j, j)
p(x | j)  p (x | j, j) where:

Pattern Classification, Chapter 3 73
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• Use the information provided by the training samples to 
estimate 
 = (1, 2, …, c), each i (i = 1, 2, …, c) is associated with 
each category

• Suppose that D contains n samples, x1, x2,…, xn

• p(D| ) is called the likelihood of  w.r.t the set of samples
• ML estimate of  is, by definition the value     that  

maximizes p(D | )
“It is the value of  that best agrees with the actually 
observed training sample”
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• Optimal estimation
– Let  = (1, 2, …, p)t and let  be the gradient operator

– We define l() as the log-likelihood function
l() = ln p(D | )

– New problem statement:
determine  that maximizes the log-likelihood
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Necessary conditions for an optimum:

l = 0
• Local or global maximum
• Local or global minimum 
• Saddle point 
• Boundary of parameter space
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Example of ML estimation: unknown 

– p(xi | ) ~ N(, )
(Samples are drawn from a multivariate normal 
population)

 =  therefore:

• The ML estimate for  must satisfy:
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• Multiplying by  and rearranging, we obtain:

Just the arithmetic average of the samples 
of the training samples!

Conclusion: 
If p(xk | j) (j = 1, 2, …, c) is assumed to be Gaussian in a d-
dimensional feature space, then we can estimate the vector 
 = (1, 2, …, c)t and perform optimal classification!
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• Example of ML estimation: unknown  and 
(univariate)

 = (1, 2) = (, 2)
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Summation:

Combining (1) and (2), one obtains:
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Bias
– ML estimate for 2 is biased

– For one sample, the estimated variance is 
always zero => under-estimate

– An elementary unbiased estimator for  is:

– Ultimately, interested in estimate that 
maximizes classification performance

Pattern Classification, Chapter 3 81
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Model Error

• What if we assume class distribution to be 
N(µ,1), but true distribution is N(µ,10)?
– ML estimate: θ=µ is the correct mean

• Will this θ result in best classifier 
performance?
– NO

Pattern Classification, Chapter 3 82


