CS 559: Machine Learning
Fundamentals and Applications
13th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215




Project Presentations

* Present project in class on:

— December 7: regular time
— December 9: 3:00-6:00pm

e Send me PPT/PDF file 2 hours before

— 37 projects * 8 min = 296 minutes
— 6 min presentation + 2 min Q&A

* Counts for 10% of total grade




Project Presentations

» Target audience: fellow classmates

o Content:
— Define problem

— Show connection to class material
 What is being classified, what are the classes etc.

— Describe data
 Train/test splits etc.

— Show results



Final Report

Due December 12 (23:59)

6-10 pages including figures, tables and
references

Counts for 15% of total grade
NO LATE SUBMISSIONS



Instructions for Final

Emphasis on new material, not covered in Midterm
Old material still in

Will post reading list next week

Open book, open notes, open homeworks and
solutions

No laptops, no cellphones

Calculators OK
— No graphical solutions. Show all computations



Overview

 Unsupervised Learning (slides by Olga
Veksler)
— Supervised vs. unsupervised learning
— Unsupervised learning
— Flat clustering (k-means)
— Hierarchical clustering

e Expectation Maximization



Supervised vs. Unsupervised Learning

« Up to now we considered supervised learning
scenarios, where we are given:
1. samples x,,.., X,
2. class labels for all samples

— This is also called learning with teacher, since the correct
answer (the true class) is provided

* Here, we consider unsupervised learning scenarios,
where we are only given:

1. samples x;,..., X,

— This is also called learning without teacher, since the
correct answer is not provided

— Do not split data into training and test sets



Unsupervised Learning

 Data are not labeled

 Parametric Approach
— Assume parametric distribution of data

— Estimate parameters of this distribution
« Expectation Maximization

 Non-Parametric Approach

— Group the data into clusters, each cluster
(hopefully) says something about classes present

in the data



Why Unsupervised Learning?

e Unsupervised learning is harder
— How do we know if results are meaningful? No answer
(labels) is available
» Let the experts look at the results (external evaluation)
» Define an objective function on clustering (internal evaluation)

 We nevertheless need it because
1. Labeling large datasets is very costly (speech
recognition, object detection in images)
« Sometimes can label only a few examples by hand
2. May h%ve no idea what/how many classes there are (data
mining

3. May want to use clustering to gain some insight into the
structure of the data before designing a classifier

» Clustering as data description



Clustering

e Seek “natural”’ clusters in the data
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 What is a good clustering?
— internal (within the cluster) distances should be small
— external (intra-cluster) should be large

« Clustering is a way to discover new categories
(classes)
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What we need for Clustering

1. Proximity measure, either
— similarity measure s(x;,X,): large if x;,x, are similar
— dissimilarity(or distance) measure d(x;,X,): small if
X, X, are similar
2. Criterion function to evaluate a clustering
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3. Algorithm to compute clustering
— For example, by optimizing the criterion function
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How Many Clusters?
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* Possible approaches
1. Fix the number of clusters to &

2. Find the best clustering according to the
criterion function (number of clusters may vary)
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Proximity Measures

* A good proximity measure is VERY application
dependent

— Clusters should be invariant under the transformations
“natural” to the problem

— For example for object recognition, we should have
Invariance to rotation

— For character recognition, invariance to rotation is bad

A/,aredisté‘”?%

9
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Distance Measures

 Euclidean distance ()
dlx,)= |3 (x- xF
k=1
« Manhattan (city block) distance 1
d(x;,x)) Z‘x,“" X
e Chebyshev distance N

d(x;, x;)=max | x) — x|
<k<d




Feature Scaling

Old problem: how to choose appropriate relative
scale for features?

— [length (in meters or cms?), weight (in grams or kgs?)]

In supervised learning, we can normalize to zero
mean unit variance with no problems

In clustering this is more problematic

If variance in dala is due to cluster presence, then
normalizing features is not a good thing
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Simple Clustering Algorithm

e Having defined a proximity function, we can
develop a simple clustering algorithm

— go over all sample pairs, and put them in the same
cluster if the distance between them is less then some
threshold distance d, (or if similarity is larger than s)

* Pros: simple to understand and implement

» Cons: very dependent on d, (or s;), automatic
choice of d, (or s;) is not easy

d, too small: d, larger: d, too large:
too many clusters reasonable clustering too few clusters
.: :":f. ..“o." . . . .'..:
090 . 00:. 00 . 09"
----- i@ o
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Criterion Functions for Clustering

« Given samples Xq,...,.X,
 Partition them into ¢ subsets D;,,...,D,
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» Can define a criterion function J(D,...,D.) which
measures the quality of a partitioning Dy,...,D,

e Then clustering is a well defined problem

— the optimal clustering is the partition which optimizes
the criterion function



SSE Criterion Function

* Let n, be the number of samples in D,, and
define the mean of samples in D,

 Then the sum-of-squared errors criterion
function (to minimize) is:  u. =3 Slix-u

.
.
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 Note that the number of clusters, c, is fixed



SSE Criterion Function
Jose = ZZHX u; |

i=1 xeD;

The SSE criterion is appropriate when data forms compact
clouds that are relatively well separated

SSE criterion favors equally sized clusters, and may not be
appropriate when “natural” groupings have very different sizes

small Jgq
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Example of SSE Failure

larger Jsge smaller Jssg

 The problem is that one of the “natural’
clusters is not compact (the outer ring)

20



Other Clustering Criteria

« Can obtain other criterion functions by
replacing ||x - y||¢ by any other measure of
distance between points in D,

e We can also use the median, maximum,
etc. instead of the average distance



Maximum Distance Criterion

=  Consider Yos= Zn

max !l x-y ||2]
| yeDj.xeD;

= Solves previous case

e

smallest J,...

= However J,., is not robust to
outliers
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K-means Clustering



lterative Optimization Algorithms

Having proximity measure and criterion function,
we need an algorithm to find the optimal clustering

Exhaustive search is impossible, since there are
approximately c"/c! possible partitions

Usually, iterative algorithms are used

1. Find a reasonable initial partition

2. Repeat: move samples from one group to another
s.t. the objective function J is improved
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lterative Optimization Algorithms

* |terative optimization algorithms are similar to
gradient descent

— Move in a direction of descent, but not in the
steepest descent direction since they have no
derivative of the objective function

— Solution depends on the initial point
— Cannot find global minimum

e Main Issue

— How to move from current partitioning to the one
which improves the objective function



K-means Clustering

 \We now consider an example of iterative

optimization algorithm for the special case of Jgg¢
objective function

k
Jsse =Z Z” X—p |°

.f.:1 Xe D‘:

 K-means is probably the most famous clustering
algorithm

— It has a smart way of moving from current partitioning
to the next one

* Fix number of clusters to k (¢ = k)



K-means Clustering

1. Initialize
—  Pick kcluster centers arbitrarily
—  Assign each example to closest center

2. Compute sample means for each e
cluster .‘.Xﬁ"
. — @,
3. Reassign all samples to the closest .Q' ..... .- %oe
mean : : :.:'.‘ :;':
____________ | 0.

- -
-----
lllllllllllllllllllllllllllllllllllllllllllllll

4. If clusters changed at step 3, go to
step 2



K-means Clustering

Consider steps 2 and 3 of the algorithm
2. compute sample means for each cluster

Jsse = Z Z” X—p||?
i=1 Xe D, \ I
= sum of "‘"-7_]_

If we represent clusters
by their old means, the
error has decreased

N\ =~

/ I
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K-means Clustering

3. reassign all samples to the closest mean

If we represent clusters
by their old means, the
error has decreased

I
> 7
 However we represent clusters by their
new means, and the mean always results
In the smallest sum of squared distances

2 5V xezif= 2 3 (11 2wz 1 217) = D x+2) <0

Xe DJ.' Xe D,' Xe DJ.'

1
ZZ—FZX

i xeD



K-means Clustering

* Proved that by repeating steps 2 and 3, the
objective function is reduced

— Found a “smart “ move which decreases the

objective function

 Thus k-means converges after a finite
number of iterations of steps 2 and 3

 However k-means is not guaranteed to find a

global minimum
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K-means Clustering

-inding the optimum of Jgg- is NP-hard
n practice, k-means clustering usually
performs well

t can be very efficient

ts solution can be used as a starting point for
other clustering algorithms

Hundreds of papers on variants and
improvements of k-means clustering are
published every year




Hierarchical Clustering



Hierarchical Clustering

« Up to now considered flat clustering
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 For some data, hierarchical clustering is more
appropriate than “flat” clustering

e Hierarchical clustering
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Example of Hierarchical Clustering

animal|
| with spine| [ no spine]
T_L _
og| |cat Jellyfish

plant
‘ seed ‘ spore
producing ‘producmg
L

L apple

rose

mushroom |

mold |
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Hierarchical Clustering: Dendrogram

* The preferred way to represent a
hierarchical clustering is a dendrogram

— Binary tree
— Level kcorresponds

o3
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to partitioning with
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use clustering from
level n-k+17

— If samples are in the same cluster at level A,
they stay in the same cluster at higher levels

— The dendrogram typically shows the
similarity of grouped clusters

— If kclusters required, *- ‘
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Hierarchical Clustering: Venn Diagram

e Can also use Venn diagram to show
hierarchical clustering, but similarity is not
represented quantitatively




Hierarchical Clustering

 Algorithms for hierarchical clustering can be
 divided into two types:

1. Agglomerative (bottom up) procedures
— Start with n singleton clusters
— Form hierarchy by merging most similar clusters
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2. Divisive (top down) procedures
— Start with all samples in one cluster
— Form hierarchy by splitting the “worst” clusters



Divisive Hierarchical Clustering

« Any “flat” algorithm which produces a fixed number

of clusters can be used

.; ..\.
/N N
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Agglomerative Hierarchical Clusterin

initialize with each example in 0:®: : .%-.
singleton cluster
while there is more than 1 cluster ﬂ
1. find 2 nearest clusters ' o
2. merge them ‘®:e: O a9
apur' '.!v' ;‘.’.::: ‘.‘!‘:
e Four common ways to
measure cluster distance ﬂ
1.  minimum distance dmin(D,-,D;)= min i x-yll
xeD;,yeD;
2. maximum distance dmax(D,.,Dj)= max |l x-yll
xeD; .yeD;
3. average distance (,,D,)=—
- g da],fg ir™=j = Z lex_y”

n,-'nj xeD; yeD;
4. mean distance d nean (D1, D; ) =I1 ity = ;||

39



Single Linkage or Nearest Neighbor

 Agglomerative clustering with minimum distance
doin(D;,D; )= min Ix-yI

Generates minimum spannlng tree

 Encourages growth of elongated clusters
e Disadvantage: very sensitive to noise

‘e,
.y
"y

What we want what we get
® .0 S "o o E | & ."‘; -------- ® ¢
o e |:%e ey 1
............ 0% 1. 09 A% e 8 @85
noisy sample
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Complete Linkage or Farthest Neighbor

e Agglomerative clustering with maximum distance

dmax(D:'!Dj)z ma)( ” X—y ”

xeD;,yeD,

Encourages compact clusters

Does not work well if elongated clusters are
present

rnax (D1:D2) < dimax (D2,D5)
thus D, and D, are merged instead of D,and D,

41



Average and Mean Agglomerative Clustering

« Agglomerative clustering is more robust under the
average or the mean cluster distance

2. 2 lx=yl

ijDj-’D

d,.,(D,D,)=

dmean(Dr"JDj}=”ﬂf —H; |

 Mean distance is cheaper to compute than the
average distance

« Unfortunately, there is not much to say about
agglomerative clustering theoretically, but it does

work reasonably well in practice



Agglomerative vs. Divisive

« Agglomerative is faster to compute, in general

 Divisive may be less “blind” to the global
structure of the data

Divisive Agglomerative

 when taking the first step . when taking the first step
(split), it has access to all (merge), it does not

the data; can find the best consider the global

possible split in 2 parts structure of the data, only
looks at pairwise
structure

RRPP



First (?) Application of Clustering

« John Snow, a London physician plotted the location of
cholera deaths on a map during an outbreak in the
1850s.

* The locations indicated that cases were clustered
around certain intersections where there were polluted
wells -- thus exposing both the problem and the
solution.

From: Nina Mishra HP Labs



Applications of Clustering

* Image segmentation
— Find coherent “objects” in images

From: Image Segmentation by Nested Cuts, O. Veksler, CVPR2000

45



Image Database Organization



Clustering Summary

Clustering (nonparametric learning) is useful for
discovering inherent structure in data

Clustering is immensely useful in different fields

Clustering comes naturally to humans (in up to 3
dimensions), but not so to computers

It is very easy to design a clustering algorithm, but
it is very hard to make theoretical claims on
performance

General purpose clustering is unlikely to exist; for
best results, clustering should be tuned to
application at hand



Expectation Maximization

Slides based on Olga Veksler’s



Unsupervised Learning

e In unsupervised learning, where we are
only given samples x4,..., X, without class
labels

 Nonparametric approach: clustering

e Parametric approach:
— assume parametric distribution of data
— estimate parameters of this distribution

— much “harder” than the supervised learning
case



Parametric Unsupervised Learning

 Assume the data was generated by a model with
known shape but unknown parameters

* Advantages of having a model
— Gives a meaningful way to cluster data

— adjust the parameters of the model to maximize the
probability that the model produced the observed data

— Can sensibly measure if a clustering is good
« compute the likelihood of data induced by clustering

— Can compare 2 clustering algorithms
« which one gives the higher likelihood of the observed data?

P(x[6)

:>Q... O




Parametric Supervised Learning

— We have m classes

— with samples Xx4,..., X, from each class 1, 2,.., m
— D, holds samples from class |

— the probability distribution for class i is p;(x|6;)

51



Parametric Supervised Learning

» Use the ML method to estimate parameters 6,
— Find 6, which maximizes the likelihood function F(6))

p(Df/Qf):Hp(X/Qf):F(gf)

Xe DI'

 or, equivalently, find 8, which maximizes the log
likelihood 1(8,)
1(6,)=Inp(D;16,)= > Inp(x|6,)

Xe D;

8, = argmax[in p(D, | 6,)] 6, = argmax|in p(D, | 6,)]
“ = 52



Parametric Supervised Learning

Now the distributions are fully specified

We can classify unknown sample using MAP
classifier

53



Parametric Unsupervised Learning

* In unsupervised learning, no one tells us the
true classes for samples. We still know that:

— we have m classes
— we have samples X4,..., X, from unknown class
— the probability distribution for class i is p;(x|0;)

« Can we determine the classes and
parameters simultaneously?

XL
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Mixture Density Model

 Model data with mixture density

c:omponeni;'k densities

m [ \
P(X|9)=ZP(X | C;sgf)P(Cf)
=

mixing parameters

— where 6={0,,.., 6.}
— P(cq)*+P(c,)..+P(c,,)=1
* To generate a sample from distribution p(x|0):

— first select class | with probability P(c;)
— then generate x according to probability law p(x|c;, 6,)

o
Q
p(x|c,,0,) p(X|C;3,65)

p(XiC,,6,)




Example: Gaussian Mixture Density

e Mixture of 3 Gaussians

P,(X)EN(
pz(X)EN(

L)

oalf5

o002 M7-71[5 9]

101

5_

p(x)=0.2p,(x)+0.3p,(x)+0.5p,(x)

56



Mixture Density
p(x16)=. plx1¢;.6,)Plc;)

* P(c,),.., P(c,,) can be known or unknown
— Suppose we know how to estimate 0,,...,, 6,,
and P(c,),.., P(c,,)
o Can “break apart” mixture p(x|09) for
classification

* To classify sample x, use MAP estimation,
that iIs choose class | which maximizes

P(c; | x,6;) o p(xlcuei)P(Ci)

J

~
probability of component i  probability of
to generate x component i



ML Estimation for Mixture Density

j=1

Mﬂ&m=idﬂ09)() S plx1c;.6,)p,

e Use Maximum Likelihood estimation for a
mixture density; need to estimate

— 6 ={6,,.., 0}
— Py = P(Cy)y Py = P(Cp), @and p = {py,..., P}

* As in the supervised case, form the log
likelihood function

I(e,p)=lnp(D|9,p)=k2illnp(xkIe,p) ;In[z‘p( X|c; 9) }



ML Estimation for Mixture Density

— Need to maximize (0, p) with respect to 6 and p

* 1(0, p) is not the easiest function to maximize

— |If we take partial derivatives with respect to 6, p
and set them to 0, typically we have a “coupled”
nonlinear system of equations

— usually closed form solution cannot be found

 We could use the gradient ascent method

— Iin general, it is not the best method to use, should
only be used as last resort

e There is a better algorithm, called EM



Mixture Density
Before EM, let’s look at the mixture density again
p(x|6,p)=zm:p(x | c,r'!gj)p,r'

Suppose we know how to estimate 0,,.., 6., and p4,.., P,

Estimating the class of x is easy with MAP, maximize:
p(x|c;,6,)P(c;)=p(x|c;,6,)p,

Suppose we know the class of samples x;,..., X,

— This is just the supervised learning case, so estimating 0,,.., 8
and pq,..., Py, IS €asy

6, = argmax|in p(D, | )] B = “;':,- |
B;

This is an example of chicken-and-egg problem

— The EM algorithm approaches this problem by adding “hidden”
variables



Expectation Maximization

EM is an algorithm for ML parameter estimation when the
data have missing values. It is used when:

1. Data are incomplete

— Some features are missing for some samples due to data
corruption, partial survey responses, etc.

— This scenario is not covered here

2. The data X are complete, but p(X| 0) is hard to
optimize. We introduce hidden variables Z, whose
values are missing, hoping to make the optimization
of the “complete” likelihood function p(X,Z| 6) easier.

— This scenario is useful for the mixture density estimation,
and is the way we will look at EM



EM: Hidden Variables for Mixture Density
p(x16)=3 plxlc,.6,)p

* For simplicity, assume component densities are
1 (x_ﬂj)z
0. 1= —
plx|c;.0,) G@exp( =

e assume for now that the variance is known

— need to estimate 0 = {u,..., 1}
A

VANFAN

 If we knew which sample came from which component (that is
the class label), the ML parameter estimation is easy

 Thus to get an easier problem, introduce hidden variables
which indicate which component each sample belongs to




EM: Hidden Variables for Mixture Density

e Forie[1, n], ke[1, m], define hidden
variables z®

J _[1 1 sample fwas generated by component k
7|0 otherwise

x, > 1x,,27,...,z2™}

 z¥ are indicator random variables, they
indicate which Gaussian component
generated sample X



EM: Hidden Variables for Mixture Density

e Letz ={zM,.., z(™}, be indicator r.v.
corresponding to sample x.

» Conditioned on z, the distribution of x; is
Gaussian

p(xf |zf:9)”N(ﬂk,0'2)
« where kiss.t.z K =1



EM: Joint Likelihood

¢ Letz,={z",., zM}and Z= {z,,.., 2.}
 The complete likelihood is

P(X,Z|6) = P(Xsees X3 24500012, | 6) ]'[plea

—Hp x; | z;,,0) p(z;)

J \ J
Y

gauss;an part ofpc

 |f we actually observed Z, the log likelihood In[p(X,Z|6)]
would be trivial to maximize with respect to 8 and p,

 The problem, is, of course, that the values of Z are
missing, since we made it up (that is, Z is hidden)




EM Derivation

nstead of maximizing In[p(X,Z| 6)] the idea
nehind EM is to maximize some function of

n[p(X,Z| 0)], usually its expected value
E; [Inp(X,2]6 )]
— |If 8 makes In[p(X,Z| 6)] large, then 6 tends to
make E[ln p(X,Z]| 0)] large
— the expectation is with respect to the missing data
Z

— that is with respect to density p(Z |X, 0)
however 0 is our ultimate goal




The EM Algorithm

 The EM solution is:
— Start with initial parameters 6

— Iterate the following 2 steps until convergence

E. compute the expectation Q(8 | 8Y) of the log
likelihood with respect to current estimate 6®
and X

0(9 | 9(‘))= Ez[In p(X,Z|0)] X,ﬁ(”]
M. maximize Q(0O | 6)
o) = argmax Qo | 6")
)



In p({( |16)

EM in Pictures

optimal value for @
wed like to find it but
optimizing p(X|6) is
very difficult

68



EM In Pictures

E-step: Compute a distribution on the labels of the points, using current parameters

M-step: Update parameters using current guess of label distribution.

i
|
|
|
|
|

m




Convergence

|t can be proven that the EM algorithm
converges to a local maximum of the log-
likelihood

In p(X |0)



EM for Mixture of Gaussians: E step

o Let’s revisit the example: P(X|9=P)=ZP(X|C;=9,«)P;
j=1

e with: p(x|c,-,9,-)=GJE“P(—(X;‘?)QJ

* Need to estimate 6,,.., 8., and py,.., P,

« Define: ,w_[1 If sample iwas generated by component k
" 710 otherwise

e and z, = {z",.., z(™} and Z= {z,,..., Z,}}
* \We need the log-likelihood of observed X and hidden Z

Inp(X,Zle)zlnf[p(xj,zfle ZmP 1z;,6)P(z;)



EM for Mixture of Gaussians: E step

* Omitting several steps

« We need to compute E,[z] (the expected value
of the latent variables
E,|z¥|=0*P(z¥ =0]6", x,)+1* P(z% =1] 8", x,)

p(x, 169,2% =1)P(z*¥) =1 ")
plx;16Y)

ol exp( 5 1 -u'¥ pﬁ”exp[ o =¥

3 Plx, 16,20 =)p(afn =116%) > oxp{ - oo - ¥
1

j=

= P(z¥) =116, x,) =




EM for Mixture of Gaussians: M step

Q({? | B(r])z iiEz[sz)]{m 1 _ (X; — Ky )2 +|nka

2
i—1 k=1 ON2T 20

* Need to maximize Q with respect to all
parameters

 First differentiate with respect to

aio(em‘”): anEz[zE“)]—(x*'_f“) ~0
‘uk i=1 O-
> E,|[z¥]x,

= new p =" =

the mean for class k is the weighted average of all samples,
and this weight is proportional to the current estimate of
probability that the sample belongs to class k



EM for Mixture of Gaussians: M step

o(ma“’):iiEz[z}”][ln L —("fz“‘jk)znnpk]

i=1 k=1 o2 o

« For p, we have to use Lagrange multipliers to preserve

m

the constraint: S 0 =1
_ J

« Thus we need to differentiate F(4,p)=alg]6")-2 {Zp,—q

iF(ﬁ,p) S 1 E[zW]-1=0 :ZE[Z“’] Ap, =0
P, f1pk

« Summing up over all components: ZZE 2] = lek

k=1 i=1

Since Y'Y E,[z%]=n ano Zpk—1 we get A=n

k=1 i=1

[r+1] Z E [z[k ]




The EM Algorithm: Univariate Gaussian Case

The algorithm on this slide applies ONLY to the univariate
Gaussian case with known variances

— randomly initialize y,,.., 4, and p4,.., p,, (Subject to
2p=1)

— iterate the following 2 steps until there is no change in
H1,--, Hy @Nnd pPy,.., Py

1
E. For all i, k compute Pr exp[-z—z(xf-ﬂk)z]
EZ[ZI'“(}]= m 0-1
;P; EXP('M(X;* ‘ﬂj)zj

M. for all k, do parameter update

e z"¥ | x, 12
ﬂk_; Z[ ] Pk=_zEz[Z§k}]

S E 2]
i—




The EM Algorithm

* For the more general case of multivariate Gaussians with
unknown means and variances

 E step Ez[zf{k]]z fk p(x |4, %)

;p;’p(x /ﬂ;szj)
p(x |12y )= (2;:)”’:2"\”2 exp[—%(x—,uk )fz;;i(x“uk)}
k
« M step
1 n k)
Pr = _ZEZ[ZE ] n

s ZEZ[Z,{“](X,. — Hy )(Xi_auk )

Ek — =1

3 E,[29]x,
My = =

> E, (2]
= i=1

> E,[z]

i=1




aussian Mixture Example
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EM Gaussian Mixture Example

After first iteration
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EM Gaussian Mixture Example

After second iteration

e j o — —
-~ T .
f .-\-H--\-H-- .’
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. ' £H=0.306 \ '
. \. 'ﬂi\\
e " - ! Y
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EM Gaussian Mixture Example

After third iteration

.‘
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EM Gaussian Mixture Example

After 20th iteration

!
[ @)
' N2 = 3 ™~
| = 25 ® 0. 334
Y
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Volcano Eruption Data Set
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EM Summary

 Advantages

— If the assumed data distribution is correct, the
algorithm works well

 Disadvantages

— If the assumed data distribution is wrong,
results can be quite bad

— In particular, bad results if incorrect number of
mixture components is used



