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CS 559: Machine LearningCS 559: Machine Learning 
Fundamentals and Applications

13th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E mail: Philippos Mordohai@stevens eduE-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215



Project PresentationsProject Presentations

• Present project in class on:Present project in class on:
– December 7: regular time

December 9: 3:00 6:00pm– December 9: 3:00-6:00pm

• Send me PPT/PDF file 2 hours before
– 37 projects * 8 min = 296 minutes 

– 6 min presentation + 2 min Q&A

• Counts for 10% of total grade
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Project PresentationsProject Presentations

• Target audience: fellow classmatesTarget audience: fellow classmates

• Content:
D fi bl– Define problem 

– Show connection to class material 
Wh i b i l ifi d h h l• What is being classified, what are the classes etc.

– Describe data
T i /t t lit t• Train/test splits etc.

– Show results
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Final ReportFinal Report

• Due December 12 (23:59)Due December 12 (23:59)

• 6-10 pages including figures, tables and 
referencesreferences

• Counts for 15% of total grade

• NO LATE SUBMISSIONS
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Instructions for FinalInstructions for Final

• Emphasis on new material, not covered in Midtermp ,
• Old material still in

• Will post reading list next week

• Open book, open notes, open homeworks and 
solutions

• No laptops no cellphones• No laptops, no cellphones
• Calculators OK

– No graphical solutions. Show all computationsNo graphical solutions. Show all computations
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OverviewOverview

• Unsupervised Learning (slides by OlgaUnsupervised Learning (slides by Olga 
Veksler)

Supervised vs unsupervised learning– Supervised vs. unsupervised learning

– Unsupervised learning

Flat clustering (k means)– Flat clustering (k-means)

– Hierarchical clustering

• Expectation Maximization 
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Supervised vs. Unsupervised LearningSupervised vs. Unsupervised Learning

• Up to now we considered supervised learning  
i h iscenarios, where we are given:

1. samples x1,…, xn
2. class labels for all samples
– This is also called learning with teacher, since the correct 

answer (the true class) is provided

• Here, we consider unsupervised learning scenarios, 
where we are only given:
1. samples x1,…, xnsa p es 1, , n
– This is also called learning without teacher, since the 

correct answer is not provided
– Do not split data into training and test setsp g
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Unsupervised LearningUnsupervised Learning
• Data are not labeled 

• Parametric Approach• Parametric Approach
– Assume parametric distribution of data
– Estimate parameters of this distributionp

• Expectation Maximization

• Non-Parametric Approach
Group the data into clusters each cluster– Group the data into clusters, each cluster 
(hopefully) says something about classes present 
in the data
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Why Unsupervised Learning?Why Unsupervised Learning?

• Unsupervised learning is harder
– How do we know if results are meaningful? No answer 

(labels) is available
• Let the experts look at the results (external evaluation)

D fi bj ti f ti l t i (i t l l ti )• Define an objective function on clustering (internal evaluation)

• We nevertheless need it because
1. Labeling large datasets is very costly (speech 

recognition object detection in images)recognition, object detection in images) 
• Sometimes can label only a few examples by hand

2. May have no idea what/how many classes there are (data 
mining)mining)

3. May want to use clustering to gain some insight into the 
structure of the data before designing a classifier
• Clustering as data descriptiong p
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ClusteringClustering
• Seek “natural” clusters in the data

• What is a good clustering?
– internal (within the cluster) distances should be small
– external (intra-cluster) should be large

• Clustering is a way to discover new categories 
(classes)(classes)
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What we need for ClusteringWhat we need for Clustering
1. Proximity measure, either 

i il it ( ) l if i il– similarity measure s(xi,xk): large if xi,xk are similar
– dissimilarity(or distance) measure d(xi,xk): small if 

xi,xk are similar

2. Criterion function to evaluate a clustering

3 Algorithm to compute clustering3. Algorithm to compute clustering
– For example, by optimizing the criterion function
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How Many Clusters?How Many Clusters?

• Possible approaches
1. Fix the number of clusters to k
2. Find the best clustering according to the 

criterion function (number of clusters may vary)criterion function (number of clusters may vary)
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Proximity MeasuresProximity Measures
• A good proximity measure is VERY application 

dependentdependent
– Clusters should be invariant under the transformations 

“natural” to the problem

– For example for object recognition, we should have 
invariance to rotation

– For character recognition, invariance to rotation is bad
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Distance MeasuresDistance Measures
• Euclidean distance

• Manhattan (city block) distance

• Chebyshev distance
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Feature ScalingFeature Scaling
• Old problem: how to choose appropriate relative 

scale for features?scale for features?
– [length (in meters or cms?), weight (in grams or kgs?)]

• In supervised learning, we can normalize to zero supe sed ea g, e ca o a e to e o
mean unit variance with no problems

• In clustering this is more problematic
• If variance in data is due to cluster presence, then 

normalizing features is not a good thing
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Simple Clustering AlgorithmSimple Clustering Algorithm
• Having defined a proximity function, we can 

develop a simple clustering algorithmdevelop a simple clustering algorithm
– go over all sample pairs, and put them in the same 

cluster if the distance between them is less then some 
threshold distance d0 (or if similarity is larger than s0)threshold distance d0 (or if similarity is larger than s0)

• Pros: simple to understand and implement
• Cons: very dependent on d0 (or s0), automatic 

h i f d ( ) i tchoice of d0 (or s0) is not easy
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Criterion Functions for ClusteringCriterion Functions for Clustering
• Given samples x1,…,xn

P titi th i t b t D D• Partition them into c subsets D1,…,Dc

• There are approximately cn/c! distinct partitions• There are approximately cn/c!  distinct partitions
• Can define a criterion function J(D1,…,Dc) which
measures the quality of a partitioning D1,…,Dcmeasures the quality of a partitioning D1,…,Dc

• Then clustering is a well defined problem
– the optimal clustering is the partition which optimizes 

the criterion functionthe criterion function
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SSE Criterion FunctionSSE Criterion Function
• Let ni be the number of samples in Di, and 

f fdefine the mean of samples in Di

• Then the sum-of-squared errors criterion 
function (to minimize) is:function (to minimize) is:

• Note that the number of clusters c is fixedNote that the number of clusters, c, is fixed

18



SSE Criterion FunctionSSE Criterion Function

• The SSE criterion is appropriate when data forms compact 
clouds that are relatively well separated

• SSE criterion favors equally sized clusters, and may not be 
appropriate when “natural” groupings have very different sizesappropriate when natural  groupings have very different sizes
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Example of SSE FailureExample of SSE Failure

• The problem is that one of the “natural” 
clusters is not compact (the outer ring)clusters is not compact (the outer ring)
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Other Clustering CriteriaOther Clustering Criteria

• Can obtain other criterion functions byCan obtain other criterion functions by 
replacing ||x - y||2 by any other measure of 
distance between points in Didistance between points in Di

• We can also use the median, maximum, 
etc instead of the average distanceetc. instead of the average distance
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Maximum Distance CriterionMaximum Distance Criterion
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K-means ClusteringK-means Clustering
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Iterative Optimization AlgorithmsIterative Optimization Algorithms
• Having proximity measure and criterion function, 

we need an algorithm to find the optimal clusteringwe need an algorithm to find the optimal clustering
• Exhaustive search is impossible, since there are 

approximately cn/c!  possible partitions
• Usually, iterative algorithms are used

1. Find a reasonable initial partition
2 Repeat: move samples from one group to another2. Repeat: move samples from one group to another 

s.t. the objective function J is improved
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Iterative Optimization AlgorithmsIterative Optimization Algorithms

• Iterative optimization algorithms are similar toIterative optimization algorithms are similar to 
gradient descent
– Move in a direction of descent, but not in the 

steepest descent direction since they have no 
derivative of the objective function

– Solution depends on the initial pointSolution depends on the initial point
– Cannot find global minimum

• Main IssueMain Issue
– How to move from current partitioning to the one 

which improves the objective function
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K-means ClusteringK means Clustering

• We now consider an example of iterative p
optimization algorithm for the special case of JSSE
objective function

• K-means is probably the most famous clustering 
algorithm
– It has a smart way of moving from current partitioningIt has a smart way of moving from current partitioning 

to the next one
• Fix number of clusters to k (c = k)
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K-means Clustering

1. Initialize
Pick k cluster centers arbitrarily– Pick k cluster centers arbitrarily

– Assign each example to closest center

2. Compute sample means for each 
cluster

3 Reassign all samples to the closest3. Reassign all samples to the closest 
mean

4. If clusters changed at step 3, go to 
step 2 27



K-means ClusteringK means Clustering
Consider steps 2 and 3 of the algorithm

2. compute sample means for each cluster

3. reassign all samples to the closest mean
If we represent clusters
by their old means, the
error has decreased
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K-means ClusteringK means Clustering
3. reassign all samples to the closest mean

If we represent clustersIf we represent clusters
by their old means, the
error has decreased

• However we represent clusters by their• However we represent clusters by their 
new means, and the mean always results 
in the smallest sum of squared distancesin the smallest sum of squared distances
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K-means ClusteringK means Clustering
• Proved that by repeating steps 2 and 3, the 

objective function is reducedobjective function is reduced
– Found a “smart “ move which decreases the 

objective function
• Thus k-means converges after a finite 

number of iterations of steps 2 and 3
H k i t t d t fi d• However k-means is not guaranteed to find a 
global minimum
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K-means ClusteringK means Clustering

• Finding the optimum of JSSE is NP-hardFinding the optimum of JSSE is NP hard
• In practice, k-means clustering usually 

performs wellp
• It can be very efficient
• Its solution can be used as a starting point for g p

other clustering algorithms
• Hundreds of papers on variants and 

improvements of k-means clustering are 
published every year
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Hierarchical ClusteringHierarchical Clustering
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Hierarchical ClusteringHierarchical Clustering
• Up to now considered flat clustering

F d hi hi l l i i• For some data, hierarchical clustering is more 
appropriate than “flat” clustering

• Hierarchical clustering
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Example of Hierarchical ClusteringExample of Hierarchical Clustering
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Hierarchical Clustering: DendrogramHierarchical Clustering: Dendrogram
• The preferred way to represent a 

hierarchical clustering is a dendrogramhierarchical clustering is a dendrogram
– Binary tree
– Level k corresponds

i i i i hto partitioning with 
n-k+1 clusters

– If k clusters required, q ,
use clustering from 
level n-k+1

– If samples are in the same cluster at level kIf samples are in the same cluster at level k, 
they stay in the same cluster at higher levels

– The dendrogram typically shows the 
similarity of grouped clusterssimilarity of grouped clusters
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Hierarchical Clustering: Venn DiagramHierarchical Clustering: Venn Diagram

• Can also use Venn diagram to show 
hierarchical clustering but similarity is nothierarchical clustering, but similarity is not 
represented quantitatively
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Hierarchical ClusteringHierarchical Clustering
• Algorithms for hierarchical clustering can be
• divided into two types:• divided into two types:
1. Agglomerative (bottom up) procedures

– Start with n singleton clusters
– Form hierarchy by merging most similar clusters

2. Divisive (top down) procedures
– Start with all samples in one cluster

Form hierarchy by splitting the “worst” clusters– Form hierarchy by splitting the worst” clusters
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Divisive Hierarchical ClusteringDivisive Hierarchical Clustering
• Any “flat” algorithm which produces a fixed number 

of clusters can be usedof clusters can be used
– Set c = 2
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Agglomerative Hierarchical ClusteringAgglomerative Hierarchical Clustering
initialize with each example in
singleton cluster
while there is more than 1 cluster

1. find 2 nearest clusters
2. merge them

• Four common ways to 
measure cluster distance

1. minimum distance

2. maximum distance 

3. average distance 

4. mean distance
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Single Linkage or Nearest NeighborSingle Linkage or Nearest Neighbor
• Agglomerative clustering with minimum distance

G t i i i t• Generates minimum spanning tree

• Encourages growth of elongated clusters

• Disadvantage: very sensitive to noise
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Complete Linkage or Farthest NeighborComplete Linkage or Farthest Neighbor
• Agglomerative clustering with maximum distance

• Encourages compact clusters
• Does not work well if elongated clusters are 

present

• dmax (D1,D2) < dmax (D2,D3) 
thus D and D are merged instead of D and D• thus D1 and D2 are merged instead of D2 and D3
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Average and Mean Agglomerative ClusteringAverage and Mean Agglomerative Clustering

• Agglomerative clustering is more robust under the gg g
average or the mean cluster distance

• Mean distance is cheaper to compute than the 
average distance

• Unfortunately there is not much to say about• Unfortunately, there is not much to say about 
agglomerative clustering theoretically, but it does 
work reasonably well in practice

42



Agglomerative vs DivisiveAgglomerative vs. Divisive
• Agglomerative is faster to compute, in general
• Divisive may be less “blind” to the global• Divisive may be less blind  to the global 

structure of the data

Divisive
• when taking the first step 

(split), it has access to all 
h d fi d h b

Agglomerative
• when taking the first step 

(merge), it does not 
the data; can find the best 
possible split in 2 parts

( g ),
consider the global 
structure of the data, only 
looks at pairwise
t tstructure
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First (?) Application of ClusteringFirst (?) Application of Clustering
• John Snow, a London physician plotted the location of 

cholera deaths on a map during an outbreak in the 
18501850s.

• The locations indicated that cases were clustered 
around certain intersections where there were polluted 
wells -- thus exposing both the problem and the 
solution.
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Applications of ClusteringApplications of Clustering
• Image segmentation

– Find coherent “objects” in images
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Image Database OrganizationImage Database Organization
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Clustering SummaryClustering Summary

• Clustering (nonparametric learning) is useful for g ( p g)
discovering inherent structure in data

• Clustering is immensely useful in different fields
• Clustering comes naturally to humans (in up to 3 

dimensions), but not so to computers
• It is very easy to design a clustering algorithm but• It is very easy to design a clustering algorithm, but 

it is very hard to make theoretical claims on 
performance

• General purpose clustering is unlikely to exist; for 
best results, clustering should be tuned to 
application at handapplication at hand
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Expectation MaximizationExpectation Maximization

Slides based on Olga Veksler’s
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Unsupervised LearningUnsupervised Learning

• In unsupervised learning, where we areIn unsupervised learning, where we are 
only given samples x1,…, xn without class 
labels

• Nonparametric approach: clustering
• Parametric approach:Parametric approach:

– assume parametric distribution of data
– estimate parameters of this distributionest ate pa a ete s o t s d st but o
– much “harder” than the supervised learning 

case
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Parametric Unsupervised Learning
• Assume the data was generated by a model with 

known shape but unknown parameters

• Advantages of having a model
– Gives a meaningful way to cluster data

– adjust the parameters of the model to maximize the 
probability that the model produced the observed data

C ibl if l t i i d– Can sensibly measure if a clustering is good
• compute the likelihood of data induced by clustering

– Can compare 2 clustering algorithmsCan compare 2 clustering algorithms
• which one gives the higher likelihood of the observed data?
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Parametric Supervised LearningParametric Supervised Learning
– We have m classes

i h l f h l 1 2– with samples x1,…, xn from each class 1, 2,…, m

– Di holds samples from class i

– the probability distribution for class i is pi(x|θi)
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Parametric Supervised Learningp g
• Use the ML method to estimate parameters θi

Find θ which maximizes the likelihood function F(θ )– Find θi which maximizes the likelihood function F(θi)

• or, equivalently, find θi which maximizes the log 
likelihood l(θi)likelihood l(θi)
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Parametric Supervised LearningParametric Supervised Learning
• Now the distributions are fully specified

W l if k l i MAP• We can classify unknown sample using MAP 
classifier
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Parametric Unsupervised LearningParametric Unsupervised Learning
• In unsupervised learning, no one tells us the 

true classes for samples We still know that:true classes for samples. We still know that:
– we have m classes
– we have samples x1,…, xn from unknown class1 n

– the probability distribution for class i is pi(x|θi)
• Can we determine the classes and 

parameters simultaneously?parameters simultaneously?
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Mixture Density Modely
• Model data with mixture density

– where θ={θ θ }– where θ={θ1,…, θm}

– P(c1)+P(c2)…+P(cm)=1

• To generate a sample from distribution p(x|θ):To generate a sample from distribution p(x|θ):
– first select class j with probability P(cj)  

– then generate x according to probability law p(x|cj, θj)g g p y p( | j j)

55



Example: Gaussian Mixture DensityExample: Gaussian Mixture Density
• Mixture of 3 Gaussians

56



Mixture Density

P(c ) P(c ) can be kno n or nkno n• P(c1),…, P(cm) can be known or unknown

– Suppose we know how to estimate θ1,…, θm

and P(c ) P(c )and P(c1),…, P(cm)

• Can “break apart” mixture p(x|θ) for 
l ifi ticlassification

• To classify sample x, use MAP estimation, 
that is choose class i which maximizes
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ML Estimation for Mixture DensityML Estimation for Mixture Density

• Use Maximum Likelihood estimation for a 
mixture density; need to estimate
– θ ={θ1,…, θm}

– ρ1 = P(c1),…, ρm = P(cm), and ρ = {ρ1,…, ρm}

• As in the supervised case, form the log 
likelihood functionlikelihood function
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ML Estimation for Mixture DensityML Estimation for Mixture Density

– Need to maximize l(θ, ρ) with respect to θ and ρ( , ρ) p ρ

• l(θ, ρ) is not the easiest function to maximize
– If we take partial derivatives with respect to θ, ρ 

and set them to 0, typically we have a “coupled” 
nonlinear system of equations
usually closed form solution cannot be found– usually closed form solution cannot be found

• We could use the gradient ascent method 
– in general it is not the best method to use shouldin general, it is not the best method to use, should 

only be used as last resort

• There is a better algorithm, called EMg
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Mixture Density
• Before EM, let’s look at the mixture density again

• Suppose we know how to estimate θ1,…, θm and ρ1,…, ρm

• Estimating the class of x is easy with MAP, maximize:

• Suppose we know the class of samples x1,…, xn
Thi i j h i d l i i i θ θ– This is just the supervised learning case, so estimating θ1,…, θm
and ρ1,…, ρm is easy

• This is an example of chicken-and-egg problem
The EM algorithm approaches this problem by adding “hidden”– The EM algorithm approaches this problem by adding “hidden” 
variables
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Expectation MaximizationExpectation Maximization

EM is an algorithm for ML parameter estimation when the 
d h i i l I i d hdata have missing values. It is used when:
1. Data are incomplete

– Some features are missing for some samples due to data g p
corruption, partial survey responses, etc.

– This scenario is not covered here
2. The data X are complete, but p(X| θ) is hard to p , p( | )

optimize. We introduce hidden variables Z, whose 
values are missing, hoping to make the optimization 
of the “complete” likelihood function p(X,Z| θ) easier.
– This scenario is useful for the mixture density estimation, 

and is the way we will look at EM
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EM: Hidden Variables for Mixture Density

• For simplicity assume component densities areFor simplicity, assume component densities are

• assume for now that the variance is known

– need to estimate θ = {μ1,…, μm}

• If we knew which sample came from which component (that is 
the class label), the ML parameter estimation is easy

• Thus to get an easier problem introduce hidden variables• Thus to get an easier problem, introduce hidden variables 
which indicate which component each sample belongs to
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EM: Hidden Variables for Mixture Density

• For i ϵ [1, n], k ϵ [1, m], define hidden 
variables zi

(k)variables zi

• zi
(k)  are indicator random variables, they 

indicate which Gaussian componentindicate which Gaussian component 
generated sample xi
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EM: Hidden Variables for Mixture Density

• Let zi = {zi
(1) zi

(m)} be indicator r vLet zi = {zi
( ),…, zi

( )}, be indicator r.v. 
corresponding to sample xi

• Conditioned on z the distribution of x is• Conditioned on zi, the distribution of xi is 
Gaussian

• where k is s.t. zi
(k) = 1
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EM: Joint LikelihoodEM: Joint Likelihood

• Let zi = {zi
(1),…, zi

(m)} and Z= {z1,…, zn} i i i 1 n

• The complete likelihood is

• If we actually observed Z, the log likelihood ln[p(X,Z|θ)] 
would be trivial to maximize with respect to θ and ρip ρi

• The problem, is, of course, that the values of Z are 
missing, since we made it up (that is, Z is hidden)
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EM DerivationEM Derivation

• Instead of maximizing ln[p(X,Z| θ)] the ideaInstead of maximizing ln[p(X,Z| θ)] the idea 
behind EM is to maximize some function of 
ln[p(X,Z| θ)], usually its expected value

EZ [lnp(X,Z | θ )]
– If θ makes ln[p(X,Z| θ)] large, then θ tends to 

k E[l (X Z| θ)] lmake E[ln p(X,Z| θ)] large
– the expectation is with respect to the missing data 

Z
– that is with respect to density p(Z |X, θ)

• however θ is our ultimate goalg
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The EM AlgorithmThe EM Algorithm
• The EM solution is:

– Start with initial parameters θ(0)

– Iterate the following 2 steps until convergence
E. compute the expectation Q(θ | θ(t)) of the log 

likelihood with respect to current estimate θ(t)

and Xand X

M. maximize Q(θ | θ(t))
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EM in PicturesEM in Pictures
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EM in Pictures
E-step: Compute a distribution on the labels of the points, using current parameters

M-step:Update parameters using current guess of label distribution.

E

M

E

M

E



ConvergenceConvergence

• It can be proven that the EM algorithmIt can be proven that the EM algorithm 
converges to a local maximum of the log-
likelihoodlikelihood

ln p(X |θ)
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EM for Mixture of Gaussians: E step

• Let’s revisit the example:

• with:

• Need to estimate θ1,…, θm and ρ1,…, ρm1, , m ρ1, , ρm

• Define:

• and zi = {zi
(1),…, zi

(m)} and Z= {z1,…, zn}

• We need the log-likelihood of observed X and hidden ZWe need the log-likelihood of observed X and hidden Z
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EM for Mixture of Gaussians: E step

• Omitting several steps

•• …

• We need to compute EZ[zi
(k)] (the expected value 

of the latent variablesof the latent variables
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EM for Mixture of Gaussians: M step

• Need to maximize Q with respect to allNeed to maximize Q with respect to all 
parameters

• First differentiate with respect to μ• First differentiate with respect to μk

the mean for class k is the weighted average of all samples,
and this weight is proportional to the current estimate of

73

and this weight is proportional to the current estimate of
probability that the sample belongs to class k



EM for Mixture of Gaussians: M step

F h L l i li• For ρk we have to use Lagrange multipliers to preserve 
the constraint:

• Thus we need to differentiate 

• Summing up over all components:
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The EM Algorithm: Univariate Gaussian Case

– randomly initialize μ1,.., μm and ρ1,.., ρm (subject to 
Σρ=1)

The algorithm on this slide applies ONLY to the univariate
Gaussian case with known variances

Σρi=1)

– iterate the following 2 steps until there is no change in 
μ1,.., μm and ρ1,.., ρmμ1 μm ρ1 ρm

E. For all i, k compute

M. for all k, do parameter update
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The EM Algorithm
• For the more general case of multivariate Gaussians with 

unknown means and variances

• E step

• M step• M step
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EM Gaussian Mixture ExampleEM Gaussian Mixture Example
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EM Gaussian Mixture ExampleEM Gaussian Mixture Example
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EM Gaussian Mixture ExampleEM Gaussian Mixture Example
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EM Gaussian Mixture ExampleEM Gaussian Mixture Example
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EM Gaussian Mixture ExampleEM Gaussian Mixture Example
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Volcano Eruption Data SetVolcano Eruption Data Set

Time 
between
eruptions 
(minutes)( )

D i f i ( i )Duration of eruption (minutes)

Christopher M. Bishop (2004) 82



Machine Learning Techniques for Computer Vision (ECCV 2004) Christopher M. Bishop
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Machine Learning Techniques for Computer Vision (ECCV 2004) Christopher M. Bishop
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Machine Learning Techniques for Computer Vision (ECCV 2004) Christopher M. Bishop
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Machine Learning Techniques for Computer Vision (ECCV 2004) Christopher M. Bishop
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Machine Learning Techniques for Computer Vision (ECCV 2004) Christopher M. Bishop
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Machine Learning Techniques for Computer Vision (ECCV 2004) Christopher M. Bishop
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EM SummaryEM Summary

• AdvantagesAdvantages
– If the assumed data distribution is correct, the 

algorithm works wellalgorithm works well

• Disadvantages
If the assumed data distribution is wrong– If the assumed data distribution is wrong, 
results can be quite bad

In particular bad results if incorrect number of– In particular, bad results if incorrect number of 
mixture components is used
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