
1

CS 559: Machine LearningCS 559: Machine Learning
Fundamentals and Applications

12th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E mail: Philippos Mordohai@stevens eduE-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

OverviewOverview

• Deep LearningDeep Learning

B d lid b M R t (i l)– Based on slides by M. Ranzato (mainly),
S. Lazebnik, R. Fergus and Q. Zhang

Natural Neurons

H iti f di it• Human recognition of digits
– visual cortices

– neuron interaction

Recognizing Handwritten DigitsRecognizing Handwritten Digits

• How to describe a digit to a computer
– "a 9 has a loop at the top and a vertical stroke ina 9 has a loop at the top, and a vertical stroke in
the bottom right“

– Algorithmically difficult to describe various 9sAlgorithmically difficult to describe various 9s

PerceptronsPerceptrons

• Perceptrons
• 1950s ~ 1960s Frank Rosenblatt inspired by earlier1950s 1960s, Frank Rosenblatt, inspired by earlier
work by Warren McCulloch and Walter Pitts

• Standard model of artificial neuronsStandard model of artificial neurons

Binary PerceptronsBinary Perceptrons

• Inputs
• Multiple binary inputsMultiple binary inputs

• Parameters
Th h ld & i ht• Thresholds & weights

• Outputs
• Thresholded weighted

linear combination

Layered PerceptronsLayered Perceptrons

• Layered, complex model
• 1st layer 2nd layer of1 layer, 2 layer of
perceptrons

• Perceptron rulePerceptron rule
• Weights, thresholds

Si il it t l i l• Similarity to logical
functions (NAND)

Sigmoid NeuronsSigmoid Neurons

• Sigmoid neurons
• StabilityStability

• Small perturbation, small
output change

• Continuous inputs

• Continuous outputsp

• Soft thresholds

Output FunctionsOutput Functions

• Sigmoid neurons

• Output• Output

• Sigmoid vs conventional g
thresholds

Smoothness & DifferentiabilitySmoothness & Differentiability

• Perturbations and
DerivativesDerivatives
• Continuous function

• Differentiable• Differentiable

• Layers
I l l• Input layers, output layers,
hidden layers

Layer Structure DesignLayer Structure Design

• Design of hidden layer
• Heuristic rulesHeuristic rules

• Number of hidden layers vs.
computational resourcescomputational resources

• Feedforward network
• No loops involvedNo loops involved

Cost Function & OptimizationCost Function & Optimization

• Learning with gradient descent
• Cost functionCost function

• Euclidean loss

• Non negative smooth• Non‐negative, smooth,
differentiable

Cost Function & OptimizationCost Function & Optimization

• Gradient Descent

• Gradient vector

Cost Function & OptimizationCost Function & Optimization

• Extension to multiple dimensions
• m variablesm variables

• Small change in variable

• Small change in cost• Small change in cost

Neural Nets forNeural Nets for
Computer Vision

Based on Tutorials at CVPR 2012
and 2014 byy

Marc’Aurelio Ranzato

Building an Object Recognition SystemBuilding an Object Recognition System

IDEA: Use data to optimize features for the
given taskgiven task

Building an Object Recognition SystemBuilding an Object Recognition System

What we want: Use parameterized function such that
a) features are computed efficiently
b) features can be trained efficientlyb) features can be trained efficiently

Building an Object Recognition SystemBuilding an Object Recognition System

• Everything becomes adaptive
• No distinction between feature extractor and classifier
• Big non-linear system trained from raw pixels to labels

Building an Object Recognition SystemBuilding an Object Recognition System

Q ?Q: How can we build such a highly non-linear system?
A: By combining simple building blocks we can make
more and more complex systems

Building a Complicated FunctionBuilding a Complicated Function

• Function composition is p
at the core of deep
learning methods

• Each “simple function” p
will have parameters
subject to training

Implementing a Complicated FunctionImplementing a Complicated Function

Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets

Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets

Each black box can have trainable parameters TheirEach black box can have trainable parameters. Their
composition makes a highly non-linear system.

Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets

System produces hierarchy of features

Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets

Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets

Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets

Key Ideas of Neural NetsKey Ideas of Neural Nets
IDEA # 1IDEA # 1

Learn features from data
IDEA # 2

Use differentiable functions that produceUse differentiable functions that produce
features efficiently

IDEA # 3
E d d l iEnd-to-end learning:

no distinction between feature extractor and
classifierclassifier
IDEA # 4

“Deep” architectures:
cascade of simpler non linear modulescascade of simpler non-linear modules

Key QuestionsKey Questions

• What is the input output mapping?• What is the input-output mapping?

• How are parameters trained?• How are parameters trained?

• How computational expensive is it?• How computational expensive is it?

• How well does it work?• How well does it work?

Supervised Deep LearningSupervised Deep Learning

Marc’Aurelio Ranzato

Supervised LearningSupervised Learning

{(xi yi) i=1 P } training set{(xi, yi), i 1... P } training set
xi i-th input training example
yi i-th target label
P number of training examples

G l di h l b l f i• Goal: predict the target label of unseen inputs

Supervised Learning Examples

Supervised Deep Learning

Neural Networks

Assumptions (for the next few slides):p ()
• The input image is vectorized (disregard the

spatial layout of pixels)
• The target label is discrete (classification)g ()

Question: what class of functions shall we consider
to map the input into the output?to map the input into the output?
Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination?Follow up questions: Why not a linear combination?
What are the “simpler” functions? What is the
interpretation?
Answer: later...Answer: later...

Neural Networks: examplep

x inputx input
h1 1-st layer hidden units
h2 2-nd layer hidden units
o outputo output

Example of a 2 hidden layer neural network (or 4Example of a 2 hidden layer neural network (or 4
layer network, counting also input and output)

Forward PropagationForward Propagation

Forward propagation is the process ofForward propagation is the process of
computing the output of the network given its
inputinput

Forward Propagation

W 1 1st layer weight matrix or weights
b 1 1st layer biasesb 1 layer biases

• The non-linearity u=max(0,v) is called ReLU in the DL literature.
• Each output hidden unit takes as input all the units at the

previous layer: each such layer is called “fully connected”previous layer: each such layer is called fully connected

Rectified Linear Unit (ReLU)Rectified Linear Unit (ReLU)

38

Forward Propagation

W 2 2nd layer weight matrix or weightsy g g
b 2 2nd layer biases

Forward Propagation

W 3 3rd layer weight matrix or weightsy g g
b 3 3rd layer biases

Alternative Graphical RepresentationsAlternative Graphical Representations

Interpretation
• Question: Why can't the mapping between layers be

linear?

A B iti f li f ti i• Answer: Because composition of linear functions is a
linear function. Neural network would reduce to (1 layer)
logistic regression.

• Question: What do ReLU layers accomplish?

• Answer: Piece-wise linear tiling: mapping is locally linear.

Interpretation
• Question: Why do we need many layers?

• Answer: When input has hierarchical structure, the use
f hi hi l hit t i t ti ll ffi i tof a hierarchical architecture is potentially more efficient

because intermediate computations can be re-used. DL
architectures are efficient also because they use
distributed representations which are shared across
classes.

Interpretationp

44

Interpretation

• DistributedDistributed
representations

• Feature sharing• Feature sharing

• Compositionality

45

Interpretation
Question: What does a hidden unit do?
Answer: It can be thought of as a classifier or feature
ddetector.

Question: How many layers? How many hidden units?Question: How many layers? How many hidden units?
Answer: Cross-validation or hyper-parameter search
methods are the answer. In general, the wider and the
deeper the network the more complicated the mapping.deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?
A W i ht t i d bi l d Fi tAnswer: Weight matrices and biases are learned. First, we
need to define a measure of quality of the current
mapping. Then, we need to define a procedure to adjust
the parametersthe parameters.

46

How Good is a Network

Probabilit of class k gi en inp t (softma)• Probability of class k given input (softmax):

• (Per-sample) Loss; e.g., negative log-likelihood (good for (p) ; g , g g (g
classification of small number of classes):

Training
• Learning consists of minimizing the loss (plus some

regularization term) w.r.t. parameters over the whole g) p
training set.

Question: How to minimize a complicated function of theQuestion: How to minimize a complicated function of the
parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the , p p g
procedure to compute gradients of the loss w.r.t.
parameters in a multi-layer neural network.

48

Key Idea: Wiggle to Decrease Loss

• Let's say we want to decrease the loss by adjusting W1
i jLet s say we want to decrease the loss by adjusting W i,j.

• We could consider a very small ϵ=1e-6 and compute:

• Then update:

Backward Propagation

50

Backward Propagation

51

Backward Propagation

52

Optimization

Stochastic Gradient DescentStochastic Gradient Descent

Or one of its many variants

53

Convolutional Neural
Networks

Marc’Aurelio Ranzato

54

Fully Connected Layer

Locally Connected Layer y y

Convolutional Layer

Convolutional LayerConvolutional Layer

58

Convolutional LayerConvolutional Layer

59

Convolutional LayerConvolutional Layer

60

Convolutional LayerConvolutional Layer

61

Convolutional LayerConvolutional Layer

62

Convolutional Layer

Convolutional LayerConvolutional Layer

64

Convolutional LayerConvolutional Layer

65

Convolutional LayerConvolutional Layer

66

Convolutional Layer
Question: What is the size of the output? What's the computational
cost?
Answer: It is proportional to the number of filters and depends on
th t id If k l h i K×K i t h i D×D t id i 1the stride. If kernels have size K×K, input has size D×D, stride is 1,
and there are M input feature maps and N output feature maps then:
- the input has size M×D×D

the output has size N× (D K+1) ×(D K+1)- the output has size N× (D-K+1) ×(D-K+1)
- the kernels have M×N×K×K coefficients (which have to be learned)
- cost: M×K×K×N×(D-K+1)×(D-K+1)

Question: How many feature maps? What's the size of the filters?
Answer: Usually, there are more output feature maps than input
feature maps Convolutional layers can increase the number offeature maps. Convolutional layers can increase the number of
hidden units by big factors (and are expensive to compute). The
size of the filters has to match the size/scale of the patterns we want
to detect (task dependent).

67

Key Ideasy
• A standard neural net applied to images:

– scales quadratically with the size of the inputscales quadratically with the size of the input
– does not leverage stationarity

• Solution:
– connect each hidden unit to a small patch of the

inputinput
– share the weight across space

• This is called: convolutional layers s ca ed co o ut o a aye
• A network with convolutional layers is called

convolutional network

68

Pooling Layer

Pooling Layer

Pooling Layer
Question: What is the size of the output? What's the
computational cost?
Answer: The size of the output depends on the stride
between the pools. For instance, if pools do not overlap
and have size K×K, and the input has size D×D with M
input feature maps, then:
- output is M×(D/K)×(D/K)
- the computational cost is proportional to the size of thethe computational cost is proportional to the size of the
input (negligible compared to a convolutional layer)

Question: How should I set the size of the pools?Question: How should I set the size of the pools?
Answer: It depends on how much “invariant” or robust to
distortions we want the representation to be. It is best to
pool slowly (via a few stacks of conv pooling layers)pool slowly (via a few stacks of conv-pooling layers).

71

Local Contrast Normalization

Local Contrast Normalization

Local Contrast NormalizationLocal Contrast Normalization

74

Local Contrast NormalizationLocal Contrast Normalization

75

ConvNets: Typical Stage

ConvNets: Typical ArchitectureConvNets: Typical Architecture

77

ConvNets: Typical ArchitectureConvNets: Typical Architecture

Conceptually similar to:

SIFT k P id P li SVMSIFT k-means Pyramid Pooling SVM

78

Engineered vs. learned features

DenseDense

Label

Convolutional filters are trained in a
supervised manner by back propagating

DenseDense

DenseDense

supervised manner by back-propagating
classification error

Convolution/poolConvolution/pool

DenseDense

ClassifierClassifier

Label
Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Feature extractionFeature extraction

PoolingPooling

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Image Image

slide credit: S. Lazebnik

SIFT DescriptorSIFT Descriptor

Image Apply gradient g
Pixels

pp y g
filters

Spatial poolSpatial pool

(Sum)

Normalize to unit
Feature
V tNormalize to unit

length
Vector

slide credit: R. Fergus

AlexNet
• Similar framework to LeCun’98 but:

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)More data (10 vs. 10 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Input

Conv Nets: Examples
• Pedestrian detection

83

Conv Nets: Examples
• Scene Parsing

84

Conv Nets: Examples
• Denoising

85

Conv Nets: Examples
• Object Detection

86

Conv Nets: Examples
• Face Verification and Identification (DeepFace)

87

Conv Nets: Examples
• Regression (DeepPose)

