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OverviewOverview

• Deep LearningDeep Learning

B d lid b M R t ( i l )– Based on slides by M. Ranzato (mainly), 
S. Lazebnik, R. Fergus and Q. Zhang



Natural Neurons

H iti f di it• Human recognition of digits
– visual cortices 

– neuron interaction



Recognizing Handwritten DigitsRecognizing Handwritten Digits

• How to describe a digit to a computer
– "a 9 has a loop at the top and a vertical stroke ina 9 has a loop at the top, and a vertical stroke in 
the bottom right“

– Algorithmically difficult to describe various 9sAlgorithmically difficult to describe various 9s 



PerceptronsPerceptrons

• Perceptrons
• 1950s ~ 1960s Frank Rosenblatt inspired by earlier1950s   1960s, Frank Rosenblatt, inspired by earlier 
work by Warren McCulloch and Walter Pitts

• Standard model of artificial neuronsStandard model of artificial neurons



Binary PerceptronsBinary Perceptrons

• Inputs
• Multiple binary inputsMultiple binary inputs

• Parameters
Th h ld & i ht• Thresholds & weights

• Outputs
• Thresholded weighted

linear combination



Layered PerceptronsLayered Perceptrons

• Layered, complex model
• 1st layer 2nd layer of1 layer, 2 layer of  
perceptrons

• Perceptron rulePerceptron rule 
• Weights, thresholds

Si il it t l i l• Similarity to logical 
functions (NAND)



Sigmoid NeuronsSigmoid Neurons

• Sigmoid neurons
• StabilityStability 

• Small perturbation, small 
output change

• Continuous inputs

• Continuous outputsp

• Soft thresholds



Output FunctionsOutput Functions

• Sigmoid neurons

• Output• Output

• Sigmoid vs conventional g
thresholds



Smoothness & DifferentiabilitySmoothness & Differentiability 

• Perturbations and 
DerivativesDerivatives
• Continuous function

• Differentiable• Differentiable

• Layers
I l l• Input layers, output layers, 
hidden layers



Layer Structure DesignLayer Structure Design

• Design of hidden layer
• Heuristic rulesHeuristic rules

• Number of hidden layers vs. 
computational resourcescomputational resources

• Feedforward network 
• No loops involvedNo loops involved



Cost Function & OptimizationCost Function & Optimization

• Learning with gradient descent
• Cost functionCost function 

• Euclidean loss

• Non negative smooth• Non‐negative, smooth, 
differentiable



Cost Function & OptimizationCost Function & Optimization

• Gradient Descent

• Gradient vector



Cost Function & OptimizationCost Function & Optimization

• Extension to multiple dimensions
• m variablesm variables 

• Small change in variable 

• Small change in cost• Small change in cost 



Neural Nets forNeural Nets for 
Computer Vision

Based on Tutorials at CVPR 2012 
and 2014 byy

Marc’Aurelio Ranzato



Building an Object Recognition SystemBuilding an Object Recognition System

IDEA: Use data to optimize features for the 
given taskgiven task



Building an Object Recognition SystemBuilding an Object Recognition System

What we want: Use parameterized function such that
a) features are computed efficiently
b) features can be trained efficientlyb) features can be trained efficiently



Building an Object Recognition SystemBuilding an Object Recognition System

• Everything becomes adaptive
• No distinction between feature extractor and classifier
• Big non-linear system trained from raw pixels to labels



Building an Object Recognition SystemBuilding an Object Recognition System

Q ?Q: How can we build such a highly non-linear system?
A: By combining simple building blocks we can make 
more and more complex systems



Building a Complicated FunctionBuilding a Complicated Function

• Function composition is p
at the core of deep 
learning methods

• Each “simple function” p
will have parameters 
subject to training



Implementing a Complicated FunctionImplementing a Complicated Function



Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets



Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets

Each black box can have trainable parameters TheirEach black box can have trainable parameters. Their 
composition makes a highly non-linear system.



Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets

System produces hierarchy of features



Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets



Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets



Intuition Behind Deep Neural NetsIntuition Behind Deep Neural Nets



Key Ideas of Neural NetsKey Ideas of Neural Nets
IDEA # 1IDEA # 1

Learn features from data
IDEA # 2

Use differentiable functions that produceUse differentiable functions that produce
features efficiently

IDEA # 3
E d d l iEnd-to-end learning:

no distinction between feature extractor and 
classifierclassifier
IDEA # 4

“Deep” architectures:
cascade of simpler non linear modulescascade of simpler non-linear modules



Key QuestionsKey Questions

• What is the input output mapping?• What is the input-output mapping?

• How are parameters trained?• How are parameters trained?

• How computational expensive is it?• How computational expensive is it?

• How well does it work?• How well does it work?



Supervised Deep LearningSupervised Deep Learning

Marc’Aurelio Ranzato



Supervised LearningSupervised Learning 

{(xi yi) i=1 P } training set{(xi, yi), i 1... P } training set
xi i-th input training example
yi i-th target label
P number of training examples

G l di h l b l f i• Goal: predict the target label of unseen inputs



Supervised Learning Examples



Supervised Deep Learning



Neural Networks

Assumptions (for the next few slides):p ( )
• The input image is vectorized (disregard the 

spatial layout of pixels)
• The target label is discrete (classification)g ( )

Question: what class of functions shall we consider 
to map the input into the output?to map the input into the output?
Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination?Follow up questions: Why not a linear combination? 
What are the “simpler” functions? What is the 
interpretation?
Answer: later...Answer: later...



Neural Networks: examplep

x inputx input
h1 1-st layer hidden units
h2 2-nd layer hidden units
o outputo output

Example of a 2 hidden layer neural network (or 4Example of a 2 hidden layer neural network (or 4 
layer network, counting also input and output)



Forward PropagationForward Propagation

Forward propagation is the process ofForward propagation is the process of 
computing the output of the network given its 
inputinput



Forward Propagation

W 1 1st layer weight matrix or weights
b 1 1st layer biasesb 1 layer biases

• The non-linearity u=max(0,v) is called ReLU in the DL literature.
• Each output hidden unit takes as input all the units at the 

previous layer: each such layer is called “fully connected”previous layer: each such layer is called fully connected



Rectified Linear Unit (ReLU)Rectified Linear Unit (ReLU)
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Forward Propagation

W 2 2nd layer weight matrix or weightsy g g
b 2 2nd layer biases



Forward Propagation

W 3 3rd layer weight matrix or weightsy g g
b 3 3rd layer biases



Alternative Graphical RepresentationsAlternative Graphical Representations



Interpretation
• Question: Why can't the mapping between layers be 

linear?

A B iti f li f ti i• Answer: Because composition of linear functions is a 
linear function. Neural network would reduce to (1 layer) 
logistic regression.

• Question: What do ReLU layers accomplish?

• Answer: Piece-wise linear tiling: mapping is locally linear.



Interpretation
• Question: Why do we need many layers?

• Answer: When input has hierarchical structure, the use 
f hi hi l hit t i t ti ll ffi i tof a hierarchical architecture is potentially more efficient 

because intermediate computations can be re-used. DL 
architectures are efficient also because they use 
distributed representations which are shared across 
classes.



Interpretationp
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Interpretation

• DistributedDistributed 
representations

• Feature sharing• Feature sharing

• Compositionality

45



Interpretation
Question: What does a hidden unit do?
Answer: It can be thought of as a classifier or feature 
ddetector.

Question: How many layers? How many hidden units?Question: How many layers? How many hidden units?
Answer: Cross-validation or hyper-parameter search 
methods are the answer. In general, the wider and the 
deeper the network the more complicated the mapping.deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?
A W i ht t i d bi l d Fi tAnswer: Weight matrices and biases are learned. First, we 
need to define a measure of quality of the current 
mapping. Then, we need to define a procedure to adjust 
the parametersthe parameters.
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How Good is a Network

Probabilit of class k gi en inp t (softma )• Probability of class k given input (softmax):

• (Per-sample) Loss; e.g., negative log-likelihood (good for ( p ) ; g , g g (g
classification of small number of classes):



Training
• Learning consists of minimizing the loss (plus some 

regularization term) w.r.t. parameters over the whole g ) p
training set.

Question: How to minimize a complicated function of theQuestion: How to minimize a complicated function of the  
parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the , p p g
procedure to compute gradients of the loss w.r.t. 
parameters in a multi-layer neural network.
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Key Idea: Wiggle to Decrease Loss

• Let's say we want to decrease the loss by adjusting W1
i jLet s say we want to decrease the loss by adjusting W i,j.

• We could consider a very small ϵ=1e-6 and compute:

• Then update:



Backward Propagation
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Backward Propagation

51



Backward Propagation
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Optimization

Stochastic Gradient DescentStochastic Gradient Descent

Or one of its many variants
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Convolutional Neural 
Networks

Marc’Aurelio Ranzato
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Fully Connected Layer



Locally Connected Layer y y



Convolutional Layer 



Convolutional LayerConvolutional Layer
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Convolutional LayerConvolutional Layer
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Convolutional LayerConvolutional Layer
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Convolutional LayerConvolutional Layer
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Convolutional LayerConvolutional Layer
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Convolutional Layer



Convolutional LayerConvolutional Layer
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Convolutional LayerConvolutional Layer
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Convolutional LayerConvolutional Layer
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Convolutional Layer
Question: What is the size of the output? What's the computational 
cost?
Answer: It is proportional to the number of filters and depends on 
th t id If k l h i K×K i t h i D×D t id i 1the stride. If kernels have size K×K, input has size D×D, stride is 1, 
and there are M input feature maps and N output feature maps then:
- the input has size M×D×D

the output has size N× (D K+1) ×(D K+1)- the output has size N× (D-K+1) ×(D-K+1)
- the kernels have M×N×K×K coefficients (which have to be learned)
- cost: M×K×K×N×(D-K+1)×(D-K+1)

Question: How many feature maps? What's the size of the filters?
Answer: Usually, there are more output feature maps than input 
feature maps Convolutional layers can increase the number offeature maps. Convolutional layers can increase the number of 
hidden units by big factors (and are expensive to compute). The 
size of the filters has to match the size/scale of the patterns we want 
to detect (task dependent).
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Key Ideasy
• A standard neural net applied to images:

– scales quadratically with the size of the inputscales quadratically with the size of the input
– does not leverage stationarity

• Solution:
– connect each hidden unit to a small patch of the 

inputinput
– share the weight across space

• This is called: convolutional layers s ca ed co o ut o a aye
• A network with convolutional layers is called 

convolutional network
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Pooling Layer



Pooling Layer



Pooling Layer
Question: What is the size of the output? What's the 
computational cost?
Answer: The size of the output depends on the stride 
between the pools. For instance, if pools do not overlap 
and have size K×K, and the input has size D×D with M 
input feature maps, then:
- output is M×(D/K)×(D/K)
- the computational cost is proportional to the size of thethe computational cost is proportional to the size of the 
input (negligible compared to a convolutional layer)

Question: How should I set the size of the pools?Question: How should I set the size of the pools?
Answer: It depends on how much “invariant” or robust to 
distortions we want the representation to be. It is best to 
pool slowly (via a few stacks of conv pooling layers)pool slowly (via a few stacks of conv-pooling layers).
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Local Contrast Normalization



Local Contrast Normalization



Local Contrast NormalizationLocal Contrast Normalization
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Local Contrast NormalizationLocal Contrast Normalization
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ConvNets: Typical Stage



ConvNets: Typical ArchitectureConvNets: Typical Architecture
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ConvNets: Typical ArchitectureConvNets: Typical Architecture

Conceptually similar to:

SIFT k  P id P li  SVMSIFT  k-means  Pyramid Pooling  SVM
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Engineered vs. learned features

DenseDense

Label

Convolutional filters are trained in a 
supervised manner by back propagating

DenseDense

DenseDense

supervised manner by back-propagating 
classification error

Convolution/poolConvolution/pool

DenseDense

ClassifierClassifier

Label
Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Feature extractionFeature extraction

PoolingPooling

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Image Image

slide credit: S. Lazebnik



SIFT DescriptorSIFT Descriptor

Image  Apply gradient g
Pixels

pp y g
filters

Spatial poolSpatial pool 

(Sum) 

Normalize to unit
Feature 
V tNormalize to unit 

length
Vector

slide credit: R. Fergus



AlexNet
• Similar framework to LeCun’98 but:

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)More data (10 vs. 10 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012



Input



Conv Nets: Examples
• Pedestrian detection
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Conv Nets: Examples
• Scene Parsing
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Conv Nets: Examples
• Denoising
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Conv Nets: Examples
• Object Detection
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Conv Nets: Examples
• Face Verification and Identification (DeepFace)
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Conv Nets: Examples
• Regression (DeepPose)


