
CS 558: Computer Vision 
8th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215
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Overview

• Stereo Matching
– Partially based on slides by M. Bleyer, P. Fua, 

S. Seitz and R. Szeliski

• Structure from Motion
– Partially based on slides by S. Lazebnik, S. 

Setiz, N. Snavely and R. Szeliski



Stereo Matching
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Stereo Matching
• Given two or more images of the same 

scene or object, compute a representation 
of its shape

?
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Stereo Matching

• What are some possible algorithms?
– match “features” and interpolate
– match edges and interpolate
– match all pixels with windows
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Rectification

• Project each image onto same plane, which is parallel to 
the baseline

• Resample lines (and shear/stretch) to place lines in 
correspondence, and minimize distortion

• Take rectification for granted in this course
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Rectification

BAD!
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Rectification

GOOD!



9

Finding Correspondences
• Apply feature matching criterion at all

pixels simultaneously
• Search only over epipolar lines (many 

fewer candidate positions)
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Basic Stereo Algorithm

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost
Improvement:  match windows



Disparity

• Disparity d is the difference between the x 
coordinates of corresponding pixels in the 
left and right image

d=xL-xR

• Disparity is inversely proportional to depth
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Stereo Reconstruction
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Finding Correspondences

• How do we determine correspondences?
– block matching or SSD (sum squared differences)

– d is the disparity (horizontal displacement)

• How big should the neighborhood be?

ܦܵܵ ,ݔ ;ݕ ݀ ൌ  ሾ
௫ᇲ,௬ᇲ ∈ ௫,௬

ܫ ,ᇱݔ ᇱݕ െ ᇱݔோሺܫ െ ݀, ᇱሻሿଶݕ
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Neighborhood size
• Smaller neighborhood: more details
• Larger neighborhood:  fewer isolated 

mistakes

w = 3 w = 20



Challenges
• Ill-posed inverse problem

– Recover 3-D structure from 2-D information

• Difficulties
– Uniform regions
– Half-occluded pixels
– Repeated patterns
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Pixel Dissimilarity
• Sum of Squared Differences of intensities (SSD)

• Sum of Absolute Differences of intensities (SAD)

• Zero-mean Normalized Cross-correlation (NCC)

ܦܵܵ ,ݔ ;ݕ ݀ ൌ  	
௫ᇲ,௬ᇲ ∈ ௫,௬

ሾܫ ,ᇱݔ ᇱݕ െ ᇱݔோሺܫ െ ݀, ᇱሻሿଶݕ

ܦܣܵ ,ݔ ;ݕ ݀ ൌ  ,ᇱݔሺܫ| ᇱሻݕ െ ோܫ ᇱݔ െ ݀, ᇱݕ | 
௫ᇲ,௬ᇲ ∈ ௫,௬
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Cost/Score Curve
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NCC



Locally Adaptive Support

Apply weights to contributions of 
neighboring pixels according to similarity
and proximity
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Locally Adaptive Support

• Similarity in CIE Lab color space:

• Proximity: Euclidean distance

• Weights: 
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Locally Adaptive Support: Results
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Naïve Stereo Algorithm

• For each pixel p of the left image:
– Compare color of p against the color of each pixel on 

the same horizontal scanline in the right image.
– Select the pixel of most similar color as matching 

point

21



Window-Based Matching

• Instead of matching single pixels, center a 
small window on a pixel and match the 
whole window in the right image
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Window-Based Matching
• the disparity dp of a pixel p in the left image is computed as

• where
– argmin returns the value at which the function takes a minimum
– dmax is a parameter defining the maximum disparity (search 

range)
– Wp is the set of all pixels inside the window centered on p
– c(p,q) is a function that computes the color difference between a 

pixel p of the left and a pixel q of the right image

23



Results

• The window size is a crucial parameter
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Untextured Regions
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Aperture Problem

• There needs to be a certain amount of 
texture with vertical orientation
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Repetitive Patterns
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Effects of these Problems
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Stereo Matching Summary
• One of fundamental computer vision 

problems
• A large variety of methods have been 

published
• Key idea: use global optimization to take into 

account more information than individual 
pixels

• See 
– http://vision.middlebury.edu/stereo/eval3/
– http://www.cvlibs.net/datasets/kitti/eval_stereo_flo

w.php?benchmark=stereo
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Multi-View Stereo 

• See CS 532
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Structure from Motion
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Structure from Motion

• Reconstruct 
– Scene geometry
– Camera motion

32

Unknown
camera

viewpoints



Input: Feature Tracks
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• Detect good features
– corners, line segments

• Find correspondences between frames
– Lucas & Kanade-style motion estimation
– window-based correlation



Structure from Motion
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• Given many points in correspondence across 
several images, {(uij,vij)}, simultaneously 
compute the 3D location xi and camera (or 
motion) parameters (K, Rj, tj)

• Two main variants: calibrated, and 
uncalibrated (sometimes associated with 
Euclidean and projective reconstructions)



Number of Constraints
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• How many points do we need to match?
• 2 frames:

(R,t): 5 dof + 3n point locations 
4n point measurements  n  5

• k frames:
6(k–1)-1 + 3n  2kn

• always want to use many more

=> why 5 dof for 2 cameras and 6(k-1)-1 for k cameras?



Bundle Adjustment

• What makes this non-linear minimization 
hard?
– many parameters: potentially slow
– poorer conditioning (high correlation)
– potentially lots of outliers
– gauge (coordinate) freedom

36



Structure from Motion
• Given a set of corresponding points in two or more 

images, compute the camera parameters and the 3D point 
coordinates

Camera 1
Camera 2 Camera 3R1,t1 R2,t2

R3,t3

?
? ?

?
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Structure from Motion
• Given: m images of n fixed 3D points 

• xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 
n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3
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Structure from Motion Ambiguity
• If we scale the entire scene by some factor k 

and, at the same time, scale the camera 
matrices by the factor of 1/k, the projections of 
the scene points in the image remain exactly the 
same:

It is impossible to recover the absolute scale of the scene!

)(1 XPPXx k
k
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Structure from Motion Ambiguity

• More generally: if we transform the scene using a 
transformation Q and apply the inverse transformation to 
the camera matrices, then the images do not change

  QXPQPXx -1
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Types of Ambiguity









vTv
tAProjective

15dof

Affine
12dof

Similarity
7dof

Euclidean
6dof

Preserves intersection and 
tangency

Preserves parallellism, 
volume ratios

Preserves angles, ratios of 
length









10
tA

T









10
tR

T

s









10
tR

T
Preserves angles, lengths

• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean 41



Projective Ambiguity

  XQPQPXx  P
-1

 P
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Projective Ambiguity
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Affine Ambiguity

  XQPQPXx  A
-1

 A

Affine
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Affine Ambiguity

45



Similarity Ambiguity

  XQPQPXx S
-1
S
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Similarity Ambiguity
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Structure from Motion: 
Perspective Cameras
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Projective Structure from Motion
• Given: m images of n fixed 3D points 

• xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 
n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3
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Projective Structure from Motion
• Given: m images of n fixed 3D points 

• zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and 
n 3D points Xj from the mn correspondences xij

• With no calibration info, cameras and points 
can only be recovered up to a 4x4 projective 
transformation Q:

• X → QX, P → PQ-1

• We can solve for structure and motion when 
• 2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed
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Projective SFM: Two-camera Case

• Compute fundamental matrix F between 
the two views

• First camera matrix: [I|0]
• Second camera matrix: [A|b]
• Then b is the epipole (FTb = 0), A = –[b×]F

51



Sequential Structure from Motion

• Initialize motion from two 
images using fundamental 
matrix

• Initialize structure by 
triangulation

• For each additional view:
–Determine projection matrix of 
new camera using all the known 
3D points that are visible in its 
image – calibration

ca
m

er
as

points
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Sequential Structure from Motion
•Initialize motion from two images 
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
– Determine projection matrix of new 

camera using all the known 3D 
points that are visible in its image –
calibration

– Refine and extend structure: 
compute new 3D points, 
re-optimize existing points that are 
also seen by this camera –
triangulation 

ca
m

er
as

points
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Sequential Structure from motion
•Initialize motion from two images using 
fundamental matrix

•Initialize structure by triangulation

•For each additional view:
– Determine projection matrix of new 

camera using all the known 3D points 
that are visible in its image –
calibration

– Refine and extend structure: compute 
new 3D points, 
re-optimize existing points that are 
also seen by this camera –
triangulation 

•Refine structure and motion: bundle 
adjustment

ca
m

er
as

points
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Bundle Adjustment
• Non-linear method for refining structure and motion
• Minimizing reprojection error
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Self-calibration

• Self-calibration (auto-calibration) is the process of 
determining intrinsic camera parameters directly from 
uncalibrated images

• For example, when the images are acquired by a 
single moving camera, we can use the constraint that 
the intrinsic parameter matrix remains fixed for all the 
images
– Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all camera 
matrices are in the form Pi = K [Ri | ti]

• Can use constraints on the form of the calibration 
matrix: zero skew

• Can use vanishing points

56



Triangulation: Linear Solution

• Generally, rays Cx
and C’x’ will not 
exactly intersect

• Can solve via SVD, 
finding a least 
squares solution to a 
system of equations
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Triangulation: Linear Solution

Given P, P’, x, x’
1. Precondition points and 

projection matrices
2. Create matrix A
3. [U, S, V] = svd(A)
4. X = V(:, end)

Pros and Cons
• Works for any number of 

corresponding images
• Not projectively invariant 
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Triangulation: Non-linear Solution

• Minimize projected error while satisfying

ෝᇱ࢞

′࢞

࢞

ෝ࢞

ݐݏܿ ࢄ ൌ ݐݏ݅݀ ,࢞ ෝ࢞ ଶ  ݐݏ݅݀ ,′࢞ ′ෝ࢞ ଶ
ᇱ் =0
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Triangulation: Non-linear Solution
• Minimize projected error while satisfying

• Solution is a 6-degree polynomial of t, 
minimizing 

ᇱ் =0
ݐݏܿ ࢄ ൌ ݐݏ݅݀ ,࢞ ෝ࢞ ଶ  ݐݏ݅݀ ,′࢞ ′ෝ࢞ ଶ
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Bundle Adjustment
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Bundle Adjustment 

• Refines a visual reconstruction to produce 
jointly optimal  3D structure and viewing 
parameters

• ‘Bundle’ refers to the bundle of light rays 
leaving each 3D feature and converging 
on each camera center. 
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Reprojection Error
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Notation

• Structure and Cameras being parameterized 
by a single large vector x

• Small displacement in x represented by 
• Observations denoted by 
• Predicted values at parameter value x, 

denoted by z = z(x)
• Residual prediction error, 
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Objective Function

• Minimization of weighted sum of squared 
error ( SSE ) cost function:
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Optimization Techniques

• Gradient Descent Method
• Newton-Raphson Method
• Gauss – Newton Method
• Levenberg – Marquardt  Method
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Additional Material and Software

• Open Source Structure-from-Motion 
tutorial at CVPR 2015
– http://www.kitware.com/cvpr2015-tutorial.html

• Advanced notes on bundle adjustment
• Tutorials on several popular open source 

SfM packages
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Slide Credits

• This set of sides contains contributions
kindly made available by the following 
authors
– Michael Bleyer
– Pascal Fua
– Svetlana Lazebnik
– Steve Seitz
– Noah Snavely
– Richard Szeliski


