CS 558: Computer Vision
8th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215




Overview

e Stereo Matching

— Partially based on slides by M. Bleyer, P. Fua,
S. Seitz and R. Szeliski

e Structure from Motion

— Partially based on slides by S. Lazebnik, S.
Setiz, N. Snavely and R. Szeliski



Stereo Matching



Stereo Matching

* Given two or more images of the same
scene or object, compute a representation
of its shape




Stereo Matching

 \What are some possible algorithms?

— matc
— matc
— matc

n “features” and interpolate
N edges and interpolate

n all pixels with windows



Rectification

Project each image onto same plane, which is parallel to
the baseline

Resample lines (and shear/stretch) to place lines in
correspondence, and minimize distortion
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Take rectification for granted in this course



Rectification

BAD!

ia) Owiginal image
pair overlayed with
several  epipolar
lings.

(hy  Image pair
transformed by the
specialized projec-
tive mapping H,
and H. Note that
the epipolar lines
are now parallel 1o
each other in each
image.



Rectification

GOOD!

ic)  Image pair
transtormed by
the similarity H.
and H. Note
that the image pair
is  now  rectified
(the epipolar lines
are  horizontally
aligned).

(dy Final image
rectification  after
shearing transform
H, and H|. Note
that the image pair
remains  rectified,
but the horizon-
tal distortion s
reduced.



Finding Correspondences

* Apply feature matching criterion at a//
pixels simultaneously

e Search only over epipolar lines (many
fewer candidate positions)




Basic Stereo Algorithm
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For each epipolar line
For each pixel in the left image
e compare with every pixel on same epipolar line in right image

e pick pixel with minimum match cost
Improvement. match windows
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Disparity

* Disparity d is the difference between the x
coordinates of corresponding pixels in the
left and right image

* Disparity is inversely proportional to depth
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Stereo Reconstruction
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Finding Correspondences

« How do we determine correspondences?
— block matching or SSD (sum squared differences)
ssDGyid) = ) [LEY) — k& — d Y]
(x",y")EN(x,y)

— dis the disparity (horizontal displacement)

 How big should the neighborhood be”?

13



Neighborhood size

 Smaller neighborhood: more details

e Larger neighborhood: fewer isolated
mistakes
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Challenges

 |ll-posed inverse problem

— Recover 3-D structure from 2-D information
 Difficulties

— Uniform regions

— Half-occluded pixels

— Repeated patterns
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Pixel Dissimilarity

« Sum of Squared Differences of intensities (SSD)

sSDGoy;id) = ) [LGLY) — k(= d )P
(x",y")EN(x,y)
« Sum of Absolute Differences of intensities (SAD)

SAD(x,y;d) = z [ (x"y") —Ig(x" —d,y')]
(x",y")EN(x,y)

o Zero-mean Normalized Cross-correlation (NCC)

> iew (@i, yi) — ) Ur(xi — dyyi) — )

NCC(w,y,d) =

0.0g



Cost/Score Curve
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Locally Adaptive Support

Apply weights to contributions of
neighboring pixels according to similarity
and proximity

(a) left support win- (b) nght support win- (¢) color difference
dow dow between (a) and (b)
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Locally Adaptive Support

« Similarity in CIE Lab color space:

e Proximity: Euclidean distance

® WelghtS wip,q) = k. EXp (_I; f_ﬁ";-"“!_:.,_]. - ﬁ‘l)

- p




Locally Adaptive Support. Results
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(e} variable win. [4] (f) Bay. diff [19] (g) our result (h) bad pizels (error > 1)
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Nalive Stereo Algorithm

* For each pixel p of the left image:

— Compare color of p against the color of each pixel on
the same horizontal scanline in the right image.

— Select the pixel of most similar color as matching
point
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Window-Based Matching

 Instead of matching single pixels, center a
small window on a pixel and match the
whole window In the right image

Compare color

values within
search windows

(a) Left image (b) Right image
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Window-Based Matching

* the disparity d; of a pixel p in the left image is computed as

dp = argmin Zc(q, qg—d)

0sd<dmax gelrp

e where

— argmin returns the value at which the function takes a minimum

— d..x IS @ parameter defining the maximum disparity (search
range)

— W, is the set of all pixels inside the window centered on p

— ¢(p,q) is a function that computes the color difference between a
pixel p of the left and a pixel q of the right image



Results

The window size is a crucial parameter

Window size = 3x3 pixels Window size = 21x21 pixels
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Untextured Regions

Multiple points fit
equally well.

What is the correct

disparity?

(a) Left image (b) Right image
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Aperture Problem

e There needs to be a certain amount of
texture with vertical orientation

Texture with only Multiple points fit
horizontal orientation b equally well.
Vi | | \What is the correct

disparity?

(a) Left image (b) Right image
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Repetitive Patterns

Multiple points fit
5 equally well.
What is the correct
disparity?

(a) Left image (b) Right image
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Effects of these Problems
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Window size = 3x3 pixels

Low Texture

Aperture
Problem

Repetitive
Pattern
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Stereo Matching Summary

One of fundamental computer vision
problems

A large variety of methods have been
published

Key idea: use global optimization to take into
account more information than individual
pixels

See

— http://vision.middlebury.edu/stereo/eval3/

— http://www.cvlibs.net/datasets/kitti/eval stereo flo
w.php?benchmark=stereo




Multi-View Stereo

e See CS 532




Structure from Motion



Structure from Motion
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\ camera
\ viewpoints

T .
e Reconstruct

— Scene geometry
— Camera motion
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Input: Feature Tracks
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» Detect good features
- corners, line segments

* Find correspondences between frames
- Lucas & Kanade-style motion estimation
- window-based correlation
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Structure from Motion

 Given many points in correspondence across
several images, {(u} v;)}, simultaneously

compute the 3D location x;and camera (or
motion) parameters (K, R t)

a’t] — f( 7Rj7tj7Xi]
@Zj — g( 7Rj7tj7Xi)

 Two main variants: calibrated, and
uncalibrated (sometimes associated with
Euclidean and projective reconstructions)




Number of Constraints
fa’lj — f(KaRjatjvxz)
67,] — g(K,R],t],XZ)
« How many points do we need to match?

« 2 frames:
(R,t): 5 dof + 3n point locations <
4n point measurements =>n > 5

e Kk frames:

6(k-1)-1 + 3n < 2kn
. always want to use many more

=>why 5 dof for 2 cameras and 6(k-1)-1 for k cameras?



Bundle Adjustment

 What makes this non-linear minimization
hard?
— many parameters: potentially slow
— poorer conditioning (high correlation)
— potentially lots of outliers
— gauge (coordinate) freedom



* Given a set of corresponding points in two or more

Structure from Motion

images, compute the camera parameters and the 3D point
coordinates

o Iy

@)
o

I)
Cameral °

Rl’tl

Camera2 ?

RZ’tZ

Camera 3
R3’t3
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Structure from Motion
* Given: mimages of nfixed 3D points
* X; =P X, 1=1,....,m, J=1,..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the /mn correspondences x;;




Structure from Motion Ambiguity

* |If we scale the entire scene by some factor &
and, at the same time, scale the camera
matrices by the factor of 1/4, the projections of
the scene points in the image remain exactly the

Same.

X = PX = G Pj(kX)

It is impossible to recover the absolute scale of the scene!



Structure from Motion Ambiguity

* More generally: if we transform the scene using a
transformation Q and apply the inverse transformation to
the camera matrices, then the images do not change

x =PX = (PQ*)QX)



Projective
15dof

Affine
12dof

Similarity
7dof

Euclidean
6dof

Types of Ambiguity
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Preserves intersection and
tangency

Preserves parallellism,
volume ratios

Preserves angles, ratios of
length

Preserves angles, lengths

With no constraints on the camera calibration matrix or on the

scene, we get a projective reconstruction

Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean



Projective Ambiguity

X = PX = (PQ )(QP




Projective Ambiguity
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Affine Ambiguity

\ g/
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x =PX =(PQ; )(QA
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Similarity Ambiguity
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x=PX = (PQZ QsX)




Similarity Ambiguity




Structure from Motion:
Perspective Cameras



Projective Structure from Motion
* Given: mimages of nfixed 3D points
* X; =P X, 1=1,....,m, J=1,..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the /mn correspondences x;;




Projective Structure from Motion

Given: mimages of nfixed 3D points
e Zjj Xij = Pi X, 1=1,...,m, J=1,..,n
Problem: estimate m projection matrices P, and

n 3D points X, from the mn correspondences X,

With no calibration info, cameras and points
can only be recovered up to a 4x4 projective
transformation Q:

« X— QX,P—PQT
We can solve for structure and motion when
e 2mn>=11m+3n-15
For two cameras, at least 7 points are needed




Projective SFM: Two-camera Case

« Compute fundamental matrix F between
the two views

* First camera matrix:  [l|0]
* Second camera matrix: [A|D]
* Then b is the epipole (F'Tb =0), A=-[b,]JF



Seqguential Structure from Motion

e |Initialize motion from two
Images using fundamental
matrix

* |nitialize structure by
triangulation

cameras

* For each additional view:

points

v

e 8 & & & 8 8 0

& & & & » B 8 9
*a & & & 5 5 B 9
* & & & & 8 B9
a & & & & & B8 B
& & & & » B B B
& &% & & » B B @

—Determine projection matrix of g
new camera using all the known

3D points that are visible in its

image - calibration

A
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Seqguential Structure from Motion

*Initialize motion from two images
using fundamental matrix

eInitialize structure by triangulation

*For each additional view:

— Determine projection matrix of new
camera using all the known 3D
points that are visible in its image -
calibration

— Refine and extend structure:
compute new 3D points,
re-optimize existing points that are
also seen by this camera -
triangulation

cameras

points

v

e & & & & 0 20

& 8 & & & ® B B

& & & & & & B B W
& & & & & B B B W
& & &8 & & & B BB
® & & & & " 9 000
B ® ® & & » B B 0B
B 5 8 & & B B B B

s ——8
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Seqguential Structure from motion

*Initialize motion from two images using
fundamental matrix

eInitialize structure by triangulation points
*For each additional view: teeeenee
& & & & & B8 8 @
— Determine projection matrix of new v YR EEREE
camera using all the known 3D points S | |[# & &« & & & & »
that are visible in its image - C| |eeeeeeee
calibration S| |eee e 0000
e & & & & 2 0 @
® & & & & & & @ @
— Refine and extend structure: compute TEEEERERIE
new 3D points, ! ®" oo 00

re-optimize existing points that are
also seen by this camera -
triangulation

*Refine structure and motion: bundle
adjustment



Bundle Adjustment

* Non-linear method for refining structure and motion
* Minimizing reprojection error

m n 2

E(P,X) =YY D(x;,PX,)

i=1 j=1

X|

i B




Self-calibration

Self-calibration (auto-calibration) is the process of
determining intrinsic camera parameters directly from
uncalibrated images

For example, when the images are acquired by a
single moving camera, we can use the constraint that
the intrinsic parameter matrix remains fixed for all the
Images

— Compute initial projective reconstruction and find 3D

projective transformation matrix Q such that all camera
matrices are in the form P, = K [R; | t;]

Can use constraints on the form of the calibration
matrix: zero skew

Can use vanishing points



Triangulation: Linear Solution

 Generally, rays C>x
and C’->x’ will not
exactly intersect

« (Can solve via SVD,
finding a least =
sguares solution to a
system of equations

T AT
AX:O A: Vp3 p2

:
From xxPX = 0 and x’xPX’ = 0 V'p; —p;



Triangulation: Linear Solution

Given P, P’, x, X’ u

1. Precondition points and X=Wvp x=
projection matrices 1

2. Create matrix A o

3. [U, S, V] =svd(A) P:

4. X=V(;, end) P = p% P =

of
Pros and Cons up! —p!
* Works for any number of vp! —p!

corresponding images A=l
 Not projectively invariant




Triangulation: Non-linear Solution

* Minimize projected error while satisfying
' Fx=0

cost(X) = dist(x,x)? + dist(x',x")?




Triangulation: Non-linear Solution

* Minimize projected error while satisfying
%' FR=0
cost(X) = dist(x, %)% + dist(x',x")?

e
FT\\“\MLI? x' e .
X e
It . 5 X
Lo~ e e (1)
image 1 — e . image 2

e Solutionis a 6-degree polynomial of ¢,
minimizing d(x, 1(t))* +d(x', 1 (1))’



Bundle Adjustment



Bundle Adjustment

* Refines a visual reconstruction to produce
jointly optimal 3D structure and viewing
parameters

» ‘Bundle’refers to the bundle of light rays
leaving each 3D feature and converging
on each camera center.



Reprojection Error

O

reprojection error ||q;; — P(C;, X;)||

objectwe functlon

9(C, X) = ZZ“’UHQU P(C5, X)Hz

=1 5=1 \

indicator variable:
1 if point jis visible in camera i

0 otherwise )
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Notation

Structure and Cameras being parameterized
by a single large vector x

Small displacement in X represented by dx
Observations denoted by z

Predicted values at parameter value X,
denoted by z = z(x)

Residual prediction error, Az(x) = z — z(x)



Objective Function

* Minimization of weighted sum of squared
error ( SSE ) cost function:

f(x) = 1) Az,(X)"W; Az, (x). AZ.(X) = z, — Zi(X)



Optimization Techniques

Gradient Descent Method
Newton-Raphson Method
Gauss - Newton Method
Levenberg - Marquardt Method



Additional Material and Software

 Open Source Structure-from-Motion
tutorial at CVPR 2015

— http://www.kitware.com/cvpr2015-tutorial.html
 Advanced notes on bundle adjustment

 Tutorials on several popular open source
SfM packages




Slide Credits

* This set of sides contains contributions
kindly made available by the following
authors
— Michael Bleyer
— Pascal Fua
— Svetlana Lazebnik
— Steve Seitz
— Noah Snavely
— Richard Szeliski



