
CS 558: Computer Vision 
7th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215
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Overview

• Segmentation and Grouping  
– Based on slides by K. Grauman and D. Hoiem

• Camera geometry
– Based on slides by M. Pollefeys, R. Hartley 

and A. Zisserman



Segmentation and Grouping

Slides by Derek Hoiem and 
Kristen Grauman
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Examples of grouping in vision

[Figure by J. Shi]

[Figure by I. Pitas et al.]

Determine image regions

Group video frames into shots

Fg / Bg

[Figure by Wang & Suter]

Object-level grouping

Figure-ground

[Figure by Grauman & Darrell]



Grouping in vision
• Goals:

– Gather features that belong together
– Obtain an intermediate representation that compactly 

describes key image (video) parts

• Top down vs. bottom up segmentation
– Top down: pixels belong together because they are from 

the same object
– Bottom up: pixels belong together because they look 

similar

• Hard to measure success
– What is interesting depends on the application
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• These intensities define the three groups.
• We could label every pixel in the image according to 

which of these primary intensities it is.
• i.e., segment the image based on the intensity feature.

• What if the image isn’t quite so simple?
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Image segmentation: toy example

Kristen Grauman
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• Now how to determine the three main intensities that 
define our groups?

• We need to cluster.

Kristen Grauman



0 190 255

• Goal: choose three “centers” as the representative 
intensities, and label every pixel according to which of 
these centers it is nearest to.

• Best cluster centers are those that minimize SSD 
between all points and their nearest cluster center ci:

1 2
3

intensity

Kristen Grauman



Clustering
• With this objective, it is a “chicken and egg” problem:

– If we knew the cluster centers, we could allocate points 
to groups by assigning each to its closest center.

– If we knew the group memberships, we could get the 
centers by computing the mean per group.

Kristen Grauman



K-means clustering
• Basic idea: randomly initialize the k cluster centers, and 

iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c1, ..., cK

2. Given cluster centers, determine points in each cluster
• For each point p, find the closest ci.  Put p into cluster i

3. Given points in each cluster, solve for ci
• Set ci to be the mean of points in cluster i

4. If ci have changed, repeat Step 2

Properties
• Will always converge to some solution
• Can be a “local minimum”

• does not always find the global minimum of objective function:

Source: Steve Seitz
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K-means: pros and cons

Pros
• Simple, fast to compute
• Converges to local minimum of 

within-cluster squared error

Cons/issues
• Setting k?
• Sensitive to initial centers
• Sensitive to outliers
• Detects spherical clusters
• Assumes means can be 

computed



Segmentation as clustering

Depending on what we choose as the feature space, we 
can group pixels in different ways.

Grouping pixels based 
on intensity similarity 

Feature space: intensity value (1-d) 



K=2

K=3
quantization of the feature space 
segmentation label map



Segmentation as clustering

Depending on what we choose as the feature space, we 
can group pixels in different ways.

R=255
G=200
B=250

R=245
G=220
B=248

R=15
G=189
B=2

R=3
G=12
B=2R

G

B

Grouping pixels based 
on color similarity 

Feature space: color value (3-d) Kristen Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we 
can group pixels in different ways.

X

Grouping pixels based on 
intensity+position similarity 

Y

Intensity

Both regions are black, but if we 
also include position (x,y), then 
we could group the two into 
distinct segments; way to encode 
both similarity & proximity.Kristen Grauman



Segmentation as clustering
• Color, brightness, position alone are not enough to 

distinguish all regions…



Segmentation as clustering

Depending on what we choose as the feature space, we 
can group pixels in different ways.

F24

Grouping pixels based 
on texture similarity 

F2

Feature space: filter bank responses (e.g., 24-d) 

F1

…

Filter bank 
of 24 filters



Image segmentation example

Kristen Grauman



Pixel properties vs. neighborhood 
properties

These look very similar in terms of their color 
distributions (histograms).

How would their texture distributions compare?

Kristen Grauman



• The mean shift algorithm [Comaniciu and Meer] seeks 
modes or local maxima of density in the feature space

Mean shift algorithm

image
Feature space 

(L*u*v* color values)
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Slide by Y. Ukrainitz & B. Sarel
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• Cluster: all data points in the attraction basin of a mode
• Attraction basin: the region for which all trajectories lead 

to the same mode

Mean shift clustering

Slide by Y. Ukrainitz & B. Sarel



• Find features (color, gradients, texture, etc)
• Initialize windows at individual feature points
• Perform mean shift for each window until convergence
• Merge windows that end up near the same “peak” or mode

Mean shift clustering/segmentation



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift segmentation results



Mean shift segmentation results



Mean shift
• Pros:

– Does not assume shape on clusters
– One parameter choice (bandwidth/window size)
– Generic technique
– Finds multiple modes

• Cons:
– Selection of bandwidth
– Does not scale well with dimension of feature space

Kristen Grauman



Superpixel algorithms

• Goal is to divide the image into a large 
number of regions, such that each regions 
lie within object boundaries

• Examples
– Watershed
– Felzenszwalb and Huttenlocher graph-based
– Turbopixels
– SLIC



Watershed algorithm



Watershed segmentation

Image Gradient Watershed boundaries



Meyer’s watershed segmentation

1. Choose local minima as region seeds
2. Add neighbors to priority queue, sorted by 

value
3. Take top priority pixel from queue

1. If all labeled neighbors have same label, assign 
that label to pixel

2. Add all non-marked neighbors to queue
4. Repeat step 3 until finished (all remaining 

pixels in queue are on the boundary)

Meyer 1991
Matlab: seg = watershed(bnd_im)



Simple trick
• Use Gaussian or median filter to reduce number 

of regions



Watershed pros and cons
• Pros

– Fast (< 1 sec for 512x512 image)
– Preserves boundaries

• Cons
– Only as good as the soft boundaries (which may be 

slow to compute)
– Not easy to get variety of regions for multiple 

segmentations

• Usage
– Good algorithm for superpixels, hierarchical 

segmentation



Felzenszwalb and Huttenlocher: 
Graph-Based Segmentation

+ Good for thin regions
+ Fast
+ Easy to control coarseness of segmentations
+ Can include both large and small regions
- Often creates regions with strange shapes
- Sometimes makes very large errors

http://www.cs.brown.edu/~pff/segment/



Turbo Pixels: Levinstein et al. 2009
http://www.cs.toronto.edu/~kyros/pubs/09.pami.turbopixels.pdf

Tries to preserve boundaries like watershed but to produce more regular regions



SLIC   (Achanta et al. PAMI 2012)

1. Initialize cluster centers on 
pixel grid in steps S

- Features: Lab color, x-y position
2. Move centers to position in 

3x3 window with smallest 
gradient

3. Compare each pixel to cluster 
center within 2S pixel distance 
and assign to nearest

4. Recompute cluster centers as 
mean color/position of pixels 
belonging to each cluster

5. Stop when residual error is 
small

http://infoscience.epfl.ch/record/177415/files/Superpixel_PAMI2011-2.pdf

+ Fast 0.36s for 320x240
+ Regular superpixels
+ Superpixels fit boundaries
- May miss thin objects
- Large number of superpixels



Introduction to Geometry

Based on slides by M. Pollefeys (ETH)
and D. Cappelleri (Purdue)
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Rotations

• Rotation matrices around the 3 axes
=> What is the inverse of a rotation matrix?
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Rotation Example
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Parameterization of Rotations

• In 3D, the 9-element rotation matrix has 3 
DOF

• Several methods exist for representing a 
3D rotation
– Euler angles
– Pitch, Roll, Yaw angles
– Axis/Angle representation
– Quaternions

51



Euler Angles
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Euler Angles
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Euler Angles
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Euler Angles to Rotation Matrix
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Roll, Pitch, Yaw Angles
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Roll, Pitch, Yaw Angles to Rotation 
Matrix
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Rigid Motion
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Homogeneous Transformation
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Hierarchy of 3D Transformations
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Image Formation

Based on slides by John Oliensis
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Image Formation

Pinhole camera

image plane
(film)

pinhole Object
Virtual image
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Similar triangles:
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Perspective Projection: Properties 

• 3D points  image points
• 3D straight lines  image straight lines

• 3D Polygons  image polygons
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Properties: Distant objects appear smaller

B’ C’
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Properties: Vanishing Points

• Image of an infinitely distant 3D point

66



Vanishing Points + Horizon

• Horizon:  all vanishing points for World Lines in 
(or parallel to) plane
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Properties: Vanishing Points
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Single View Geometry

Richard Hartley and Andrew Zisserman
Marc Pollefeys
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Homogeneous Coordinates

• 3-D points represented as 4-D vectors  (X Y Z 1)T

• Equality defined up to scale   
– (X Y Z 1)T ~ (WX WY WZ W)T

• Useful for perspective projection  makes equations 
linear

C m M1 M2
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Pinhole camera model

TT ZfYZfXZYX )/,/(),,( 




















































1
01
0
0

Z
Y
X

f
f

Z
fY
fX

linear projection in homogeneous coordinates! 71



The Pinhole Camera
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Principal Point Offset
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Hands On: Image Formation

• For a 640 by 480 image with focal length 
equal to 640 pixels, find 3D points that are 
marginally visible at the four borders of the 
image

• Increase and decrease the focal length. 
What happens?
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Camera Rotation and Translation
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Intrinsic Parameters

• Camera deviates from pinhole 
s: skew
fx  ≠ fy: different magnification in x 

and y
(cx cy): optical axis does not 

pierce image plane exactly at 
the center

• Usually:
rectangular pixels:
square pixels:
principal point known:
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Extrinsic Parameters
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Projection matrix
• Includes coordinate transformation and 

camera intrinsic parameters
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• Everything we need to know about a pinhole 
camera 

• Unambiguous
• Can be decomposed into parameters



Projection matrix

• Mapping from 2-D to 3-D is a function of 
internal and external parameters
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Two-View Geometry

Slides by R. Hartley, A. Zisserman and M. Pollefeys
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(i) Correspondence geometry: Given an image point x in the first 
image, how does this constrain the position of the corresponding 
point x’ in the second image?

(ii) Camera geometry (motion): Given a set of corresponding image 
points {xi ↔x’i}, i=1,…,n, what are the cameras P and P’ for the 
two views?

(iii) Scene geometry (structure): Given corresponding image points 
xi ↔x’i and cameras P, P’, what is the position of (their pre-
image) X in space?

Three questions:
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C, C’, x, x’ and X are coplanar

The Epipolar Geometry
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What if only C,C’,x are known?

The Epipolar Geometry
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All points on  project on l and l’

86

The Epipolar Geometry



Family of planes  and lines l and l’ 
Intersection in e and e’
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The Epipolar Geometry



epipoles e, e’
= intersection of baseline with image plane 
= projection of projection center in other image
= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)
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The Epipolar Geometry



Example: Converging Cameras
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(simple for stereo  rectification)

Example: Motion Parallel to Image Plane
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e

e’

Example: Forward Motion
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The Fundamental Matrix F

algebraic representation of epipolar geometry 

l'x 

we will see that mapping is a (singular) correlation 
(i.e. projective mapping from points to lines) 
represented by the fundamental matrix F
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correspondence condition

0Fxx'T 

The fundamental matrix satisfies the condition that for 
any pair of corresponding points x↔x’ in the two 
images

 0l'x'T 
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The Fundamental Matrix F



  λCxPλX    IPP 

  
 PP'e'F

xPP'CP'l 

(note: doesn’t work for C=C’  F=0)

xP

 λX
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The Fundamental Matrix F



F is the unique 3x3 rank 2 matrix that 
satisfies x’TFx=0 for all x↔x’

(i) Transpose: if F is fundamental matrix for (P,P’), then FT is 
fundamental matrix for (P’,P)

(ii) Epipolar lines: l’=Fx & l=FTx’
(iii) Epipoles: on all epipolar lines, thus e’TFx=0, x e’TF=0, 

similarly Fe=0
(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)
(v) F is a correlation, projective mapping from a point x to a line 

l’=Fx (not a proper correlation, i.e. not invertible)

95

The Fundamental Matrix F



Two View Geometry Computation: Linear Algorithm
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separate known from unknown
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For every match (m,m´):
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Benefits from having F

• Given a pixel in one image, the 
corresponding pixel has to lie on epipolar 
line

• Search space reduced from 2-D to 1-D
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simplify stereo matching 
by warping the images

Apply projective transformation so that epipolar lines
correspond to horizontal scanlines

e

e

map epipole e to (1,0,0)

try to minimize image distortion

problem when epipole in (or close to) the image
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Image Pair Rectification
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Planar Rectification

Bring two views 
to standard stereo setup
(moves epipole to )
(not possible when in/close to image)

(standard approach)
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Rectification Example
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