CS 558: Computer Vision
7t Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215




Overview

e Segmentation and Grouping
— Based on slides by K. Grauman and D. Hoiem

 Camera geometry

— Based on slides by M. Pollefeys, R. Hartley
and A. Zisserman



Segmentation and Grouping

Slides by Derek Hoiem and
Kristen Grauman



Examples of grouping in vision

Shot 2 Shot 3 Shot 4 Shot 5 Shot 6

[Figure by J. Shi]
Determine image regions

[Figure by Wang & Suter]
Figure-ground

~ [Figure b Grum_'an & Darrell]
Object-level grouping



Grouping in vision

e (Goals:

— Gather features that belong together

— Obtain an intermediate representation that compactly
describes key image (video) parts

 Top down vs. bottom up

— Top down: pixels belong together because they are from
the same object

— Bottom up: pixels belong together because they look
similar

e Hard to measure success
— What is interesting depends on the application



white
pixels

Image segmentation: toy example
black pixels _/

3 gray e
2 .| / pifels -

Input image L o J

Intensity

pixel count

* These intensities define the three groups.

 We could label every pixel in the image according to
which of these primary intensities it is.

* i.e., segment the image based on the intensity feature.
 What if the image isn’t quite so simple?

Kristen Grauman
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e Now how to determine the three main intensities that
define our groups?

e We need to cluster.

Kristen Grauman
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0 190 255

intensity
| 3
—_— 2

e Goal: choose three “centers” as the representative
Intensities, and label every pixel according to which of
these centers it Is nearest to.

« Best cluster centers are those that minimize SSD
between all points and their nearest cluster center c:

> > 1p — ¢il|?

clusters 2 points p in cluster 2

Kristen Grauman



Clustering

« With this objective, it is a “chicken and egg” problem:

— If we knew the cluster centers, we could allocate points
to groups by assigning each to its closest center.

___________________________
- LN - ~

-’
NNNNNN
———————————————————

— If we knew the group memberships, we could get the
centers by computing the mean per group.

__________
~~~~~~~~~~~~~~~~~
- LN - N

L d
NNNNNN
———————————————————

Kristen Grauman



K-means clustering

e Basic idea: randomly initialize the A cluster centers, and
iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c,, ..., Cx
2. Given cluster centers, determine points in each cluster
« Foreach point p, find the closest c;. Put p into cluster i
3. Given points in each cluster, solve for ¢,
« Set ¢, to be the mean of points in cluster i
4. If ¢, have changed, repeat Step 2

Properties
« Will always converge to some solution

« Can be a “local minimum”
» does not always find the global minimum of objective function:

> >, 1p — cil|?

clusters 7 points p in cluster 1

Source: Steve Seitz
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K-means

Ask user how many
clusters they'd like.
(e.qg. k=5)

1.

Andrew Moore



K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5)

2. Randomly guess k
cluster Center
locations

Andrew Moore



K-means |
1. Ask user how many
clusters they'd like.
(e.g. k=5) .0

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's

closest to. (Thus
each Center "owns” @ **

a set of datapoints)

o.h

el

Andrew Moore



K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. [Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns

Andrew Moore
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K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5) i o

2. Randomly guess k
cluster Center g
locations ,

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds 1,%@ £3 1—-..,,3

- P s in el T S 1 o
the centroid of the RN e
points it owns... L L 3 i“f{ |

5. ...and jumps there " (J '
6. ...Repeat until

-
L
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terminated! ] o 0.2 0.4 0.5 0.8

Andrew Moore



K-means: pros and cons

Pros
o Simple, fast to compute

« Converges to local minimum of
within-cluster squared error

Cons/issues

e Setting k?

* Sensitive to initial centers
» Sensitive to outliers

» Detects spherical clusters gﬁg‘éﬁ
e Assumes means can be 8% gg
computed BF &

oigo o

(A): Two natural clusters (B): &-means clusters



Segmentation as clustering

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based
on intensity similarity

Feature space: intensity value (1-d)



guantization of the feature space
segmentation label map




Segmentation as clustering

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based
on color similarity

AB

@ G

R B=2

Feature space: color value (3-d)

Kristen Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based on
Intensity+position similarity

4 Intensity

o

X Both regions are black, but if we
also include position (x,y), then
we could group the two into
distinct segments; way to encode

Kristen Grauman both similarity & proximity.



Segmentation as clustering

« Color, brightness, position alone are not enough to
distinguish all regions...
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Segmentation as clustering

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based
on texture similarity

ENNNAE
ENNIAE
ESNNEZE

A M

Filter bank
of 24 filters

Feature space: filter bank responses (e.g., 24-d)



Image segmentation example

Kristen Grauman



Pixel properties vs. neighborhood
properties

These look very similar in terms of their color
distributions (histograms).

How would their texture distributions compare?

Kristen Grauman



Mean shift algorithm

« The mean shift algorithm [Comaniciu and Meer] seeks
modes or local maxima of density in the feature space

Feature space
(L*u*v* color values)

100
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Mean shift clustering

» Cluster: all data points in the attraction basin of a mode

 Attraction basin: the region for which all trajectories lead
to the same mode

Slide by Y. Ukrainitz & B. Sarel



Mean shift clustering/segmentation

« Find features (color, gradients, texture, etc)

« [nitialize windows at individual feature points

« Perform mean shift for each window until convergence

« Merge windows that end up near the same “peak” or mode




results
& -

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



Mean shift segmentation results




Mean shift

e Pros:
— Does not assume shape on clusters
— One parameter choice (bandwidth/window size)
— Generic technique
— Finds multiple modes

e Cons:
— Selection of bandwidth
— Does not scale well with dimension of feature space

Kristen Grauman



Superpixel algorithms

e Goal is to divide the image into a large
number of regions, such that each regions
lie within object boundaries

« Examples
— Watershed
— Felzenszwalb and Huttenlocher graph-based

— Turbopixels
— SLIC



Watershed algorithm




Watershed segmentation

Image Gradient




Meyer’'s watershed segmentation

1. Choose local minima as region seeds

2. Add neighbors to priority queue, sorted by
value

3. Take top priority pixel from queue
1. If all labeled neighbors have same label, assign

that label to pixe
2. Add all non-marked neighbors to queue

4. Repeat step 3 until finished (all remaining
pixels in queue are on the boundary)

Matlab: seg = watershed(bnd_im)
Meyer 1991



Simple trick

e Use Gaussian or median filter to reduce number

of regions L7 oD PO TSR, S Nl
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Watershed pros and cons

e Pros
— Fast (< 1 sec for 512x512 image)
— Preserves boundaries

e Cons

— Only as good as the soft boundaries (which may be
slow to compute)

— Not easy to get variety of regions for multiple
segmentations

« Usage
— Good algorithm for superpixels, hierarchical
segmentation



Felzenszwalb and Huttenlocher:
Graph-Based Segmentation

http://www.cs.brown.edu/~pft/segment/

1

+ Good for thin regions

+ Fast

+ Easy to control coarseness of segmentations
+ Can include both large and small regions

- Often creates regions with strange shapes

- Sometimes makes very large errors

— |
-




Turbo Pixels: Levinstein et al. 2009

http://www.cs.toronto.edu/”kyros/pubs/09.pami.turbopixels.pdf
Tries to preserve boundaries like watershed but to produce more regular regions

P v
R - FE
(W e W gt
P T I i
T i




1.

SLIC (Achanta et al. PAMI 2012)
http://infoscience.epfl.ch/record/177415/files/Superpixel PAMI2011-2.pdf

In_itializg c_Iuster centers on
pixel grid in steps S
- Features: Lab color, x-y position

Move centers to position Iin
3x3 window with smallest
gradient

Compare each pixel to cluster
center within 2S pixel distance
and assign to nearest

Recompute cluster centers as
mean color/position of pixels
belonging to each cluster

Stop when residual error is
small

+ Fast 0.36s for 320x240

+ Regular superpixels

+ Superpixels fit boundaries

- May miss thin objects

- Large number of superpixels



Introduction to Geometry

Based on slides by M. Pollefeys (ETH)
and D. Cappelleri (Purdue)

48



Rotations

 Rotation matrices around the 3 axes
=> \What is the inverse of a rotation matrix?

1 0 0
R.o=1 0 cosfl —sinf
| 0 siné cos

C cosf 0 sinf
Ry, = 0 1 ()
—sinf 0 cos#

C cosf —sinf 0
R.g= | sinff cosf 0
0 0 1




Rotation Example

Yo

The rotation matrix can be used to
perform arbitrary rotations on vectors

» Lo
0 = 90° o
0
pa pa p— O
1
cosf —sind 0
pg = Rz,() pg =| sinf# cos# 0

0

0

1

50



Parameterization of Rotations

e |[n 3D, the 9-element rotation matrix has 3

DOF
o Several methods exist for representing a

3D rotation

— Euler angles

— Pitch, Roll, Yaw angles

— Axis/Angle representation

— Quaternions



Euler Angles




Euler Angles




Euler Angles




Euler Angles to Rotation Matrix

(post-multiply using the basic rotation matrices)

R=R.sR,0R; ¢

(_1¢(“‘9("w e qusw —("qb('g.‘%‘w — .‘%'(b(‘w (‘@.‘8‘9
= SHpCOCY + CHpSyy —SpCeSy + CHCyy  SpSe
—SeCq .‘%‘95‘1,{) Cp

i Cép —So 0 17T Cp 0 S0 1T Cy —SyY
— Sé Co 0 0 1 0 Sqf Cy
0 0 1] -se 0 || O 0

95



Roll, Pitch, Yaw Angles

defined as a set of three angles about a fixed reference

=0
Y
\____% A 0
roll
.f/\':
. -
\ \
". 4 0
\- / pitch
/— Y
Lo yaw

- Yo

56



Roll, Pitch, Yaw Angles to Rotation

Matrix

(pre-multiply using the basic rotation matrices)

R=R.,R,0 R,

¢y —54 O] [ co 0 sg][1 0O
=184 ¢co 0 0 1 0 0 ¢y
B 0 O 1_ i — S50 O co 1 L O 'S'w

CHpCH CpSOSyY — SpCyhy  SpSyy T CHSHCy
— qu('fg quh"g.‘#w + (Cb(’»b S‘qb.‘%g("w — (ésw
—Se co .‘%‘w CH (“w

— .‘i.d,
Y

57



Rigid Motion

a rigid motion couples pure translation with pure rotation

rigid motions can be expressed as

L0
p'=Rip' +d)

58



Homogeneous Transformation

a homogeneous transform is a matrix representation of rigid motion,

defined as
R d
- |5 Y

where R is the 3x3 rotation matrix, and d is the |x3 translation vector

Ng Sy Aag d:r:
Ny Sy Gy dy
H =
n, Sz 0az dz
0 0 0

the inverse of a homogeneous transform can be expressed as

R" —R'd
-1
il NI

59



Hierarchy of 3D Transformations

Projective
15dof

Affine
12dof

Similarity
7dof

Euclidean
edof

A

Intersection and tangency

Parallellism of planes,
Volume ratios, centroids,
The plane at infinity 1.,

Angles, ratios of length
The absolute conic Q.

Volume

7

ETH

60



Image Formation

Based on slides by John Oliensis



Image Formation

Pinhole camera

image plane
(film)

A\ \
\\\/ \

pinhole Object

Virtual image



Projection Equation: 3D

(X,Y,2)
v °
y
X 1 _4 Y
v
>/
f /
o Xx_y_ 1 _
Similar triangles: szzf — (X y)_—(X Y)

63



Perspective Projection: Properties

« 3D points = image points
« 3D straight lines =» image straight lines

~

/
3D Polygons = image polygons




Properties: Distant objects appear smaller

™~
&
n -~
"
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Properties: Vanishing Points

* Image of an infinitely distant 3D point

, A Hed P PPN e
LR G i L e

SR e e T o
- T — - 1
- i a
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Vanishing Points + Horizon

VANISHING POINT 1 VANISHIMNG POINT 2

* HORIZOM LIME *
GUIDES CONVERGE

TO VANISHING POLNTS

TWO-POINT PERSPECTIVE

 Horizon: all vanishing points for World Lines in
(or parallel to) plane



Properties: Vanishing Points

vanishing points M
7 ‘7 >/

7 » 27 7
~ < .-*‘
£ WoN, T Ty
f:" \ #“Hf
\ &
4
oRE-potig mwe-point three-point
perspective perspective perspective

¥
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Single View Geometry

Richard Hartley and Andrew Zisserman
Marc Pollefeys

69



Homogeneous Coordinates

 3-D points represented as 4-D vectors (XY Z 1)T

e Equality defined up to scale
— (XY Z 1T~ (WXWY WZW)T

» Useful for perspective projection - makes equations
linear




Pinhole camera model

‘Y

P A
- Y
X /// & X
LY "
. - =7
X _P/// 1 Y/ Z
C /& - 7 C P —
\ P - AS - = P z
\ / LY . Y F
\ yd * principal ax f
camera -
centre -’/ image plane
S

(XY, Z) = (fX/Z,fY/Z)

(X )
2)e f 0

Y
fY |= f 0

Z
\Z) i 1 O_1

\ 1/

linear projection in homogeneous coordinates! 71



The Pinhole Camera

iJE'&:'!Z

(o1
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Principal Point Offset

Yo
YA

—l—

(X,Y,Z) = (IX/Z+p,fY/Z+p,)

T
(pX, py) principal point

(X)) _ (X
v (X +Zp, ) | f p, O v
—| Y +2Zp, |= f p, 0
/ y y 7
. £ 1 0
\1/ - _\1/




Principal Point Offset

S x=xiok,,

_ X
[ fX + pr\ f P, 0
fv+zp |=| £ p, 0 \z(
. Z ) | 1 0 |
o N
K — f P, calibration matrix
1




Hands On: Image Formation

 Fora 640 by 480 image with focal length
equal to 640 pixels, find 3D points that are
marginally visible at the four borders of the
Image

* Increase and decrease the focal length.
What happens?



Camera Rotation and Translation

R —RC|
0 1




Camera Rotation and Translation

x =PX
P=K|R |t]
t=—RC




Intrinsic Parameters

- 7 af  f cos(s
f. s c . f (s)
_ or —
K= f, ¢,
1 |
« Camera deviates from pinhole
S. skew
f, # 1 different magnification in x
and y

(c, cy): optical axis does not
pierce image plane exactly at
the center

e Usually:
rectangular pixels:
square pixels: f.=f,

principal point known: W h
(C C ): DN




Extrinsic Parameters

X
R t B
Scene motion M = (3x3) (3x1)
Oy 1
- ) )
Camera motion M': R (3x3) = (R t) Ix1
O I




Projection matrix

 Includes coordinate transformation and
camera intrinsic parameters

I I x]
X D117 P2 Pz Py Y
A Y{=| P2 Pa Paz Poy 7
i 1_ i 031 P32 Psz Pag 11

* Everything we need to know about a pinhole
camera

e Unambiguous

e Can be decomposed into parameters



Projection matrix

 Mapping from 2-D to 3-D is a function of
internal and external parameters

I _ X
X f. s c, v
Ayl=l0 f, ¢ R RTJ

VA

- - - 1

w=K[RT|-RTt)X
X =PX




Two-View Geometry

Slides by R. Hartley, A. Zisserman and M. Pollefeys



(1)

(1)

(iii)

Three questions:

Correspondence geometry: Given an image point X in the first
image, how does this constrain the position of the corresponding

point X in the second image?
Camera geometry (motion): Given a set of corresponding image
points {X, <>x’:}, 1=1,...,n, what are the cameras P and P’ for the

two views?

Scene geometry (structure): Given corresponding image points
X; <>Xx’; and cameras P, P’, what is the position of (their pre-

image) X in space?



The Epipolar Geometry

C, C’, x, X’ and X are coplanar



The Epipolar Geometry

< epipolar line

' for x

What if only C,C’,x are known?



The Epipolar Geometry

All points on 7t project on 1 and I’



The Epipolar Geometry

Family of planes © and lines | and I’
Intersection in € and ¢’



The Epipolar Geometry

epipoles e, €’

= intersection of baseline with image plane

= projection of projection center in other image
= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



Example: Converging Cameras

— .



Example: Motion Parallel to Image Plane

(simple for stereo — rectification)

90



Example: Forward Motion

i

91



The Fundamental Matrix F

algebraic representation of epipolar geometry

X1

we will see that mapping is a (singular) correlation
(i.e. projective mapping from points to lines)
represented by the fundamental matrix F



The Fundamental Matrix F

correspondence condition

The fundamental matrix satisfies the condition that for
any pair of corresponding points x«<>x’ in the two

images XvT Fx =0 (X'T - O)



The Fundamental Matrix F

X(A)=P'x+AC  (PP* =1}
|=P'CxP'P"x P'x

(note: doesn’t work for C=C’ = F=0)



The Fundamental Matrix F

F is the unique 3x3 rank 2 matrix that
satisfies x’TFx=0 for all x«>x’

(i) Transpose: if F is fundamental matrix for (P,P’), then FT is
fundamental matrix for (P’,P)

(i) Epipolar lines: I'’=Fx & I=F'x’

(iii) Epipoles: on all epipolar lines, thus ¢’ TFx=0, Vx =¢’TF=0,
similarly Fe=0

(iv) Fhas 7 d.o.f. , 1.e. 3x3-1(homogeneous)-1(rank2)

(v) F isa correlation, projective mapping from a point X to a line
I’=Fx (not a proper correlation, i.e. not invertible)



Two View Geometry Computation: Linear Algorithm

For every match (m,m’): X' Fx=0

X'XE XY, X+ Yy, Y Y, Y 4+ xE +yE, + =0

separate known from unknown

DO XYL XYY YL Y X Yol i s fiss o £ s, s £, £ =0
(data) (unknowns)
(linear)

X'l. Xl X'l. yl X.'l y'l. Xl y'l. yl y"l )SI Yl 1

—H
Il
S

XoXo Xo¥o Xoo YoXe YoVYe Yo X Y, 1

Af =0



Benefits from having F

* Given a pixel in one image, the
corresponding pixel has to lie on epipolar
line

o Search space reduced from 2-D to 1-D



Image Pair Rectification

simplify stereo matching
by warping the images

Apply projective transformation so that epipolar lines
correspond to horizontal scanlines

i \

C

~—

F)} — He map epipole e to (1,0,0)
0

try to minimize image distortion

problem when epipole in (or close to) the image



Planar Rectification

(standard approach)

Bring two views
to standard stereo setup

(moves epipole to 00)
(not possible when in/close to image)




Rectlflcatlon Example

100
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