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Office: Lieb 215
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Overview

• Image Transformations
– Based on slides by R. Szeliski

• Feature Tracking 
– Based on slides by D. Hoiem

• Dense Optical Flow
– Based on slides by K. Grauman

• Grouping and Segmentation
– Based on slides by D. Hoiem



Image Transformations

Slides by R. Szeliski
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Image Transformations
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Parametric (Global) Warping

• Transformation T is a coordinate-changing machine:
p’ = T(p)

• What does it mean that T is global?
– It is the same for any point p
– It can be described by just a few numbers (parameters)

• T is represented as a matrix (see prev. slides):
p’ = M*p
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Image Warping

Given a coordinate transform (x’,y’) = h(x,y) 
and a source image f(x,y), how do we 
compute a transformed image g(x’,y’) = 
f(T(x,y))?
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Forward Warping

Send each pixel f(x,y) to its corresponding 
location (x’,y’) = T(x,y) in the second image

Q: what if the pixel lands “between” two pixels?
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Forward Warping

Send each pixel f(x,y) to its corresponding location 
(x’,y’) = T(x,y) in the second image

Q: what if the pixel lands “between” two pixels?
A: Distribute color among neighboring pixels 
(splatting)
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Inverse Warping

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x’,y’) in the first image

• Q: what if pixel comes from “between” two 
pixels?
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Inverse Warping

• Get each pixel g(x’,y’) from its corresponding location 
(x,y) = T-1(x’,y’) in the first image

• Q: what if pixel comes from “between” two pixels?
• A: interpolate color value from neighbors 

– Bilinear interpolation typically used
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Bilinear Interpolation
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Forward vs. Inverse Warping

• Which is better?
• ... 
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Feature tracking

Mostly based on slides by Derek Hoiem, also 
partially based on sources by C. Tomasi, T. 
Kanade and T. Svoboda
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Feature Matching

• Given a feature in one image, how to find the 
best match in another image?
– Assumption images are consecutive frames in 

video

• So far we have searched for best match 
– By testing all possible translations by integer 

number of pixels (template matching)
– By comparing rotation-invariant descriptors (SIFT)
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Camera Motion
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Object Motion
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Feature Tracking
• Challenges

– Figure out which features can be tracked
– Efficiently track across frames
– Some points may change appearance over 

time (e.g., due to rotation, moving into 
shadows, etc.)

– Drift: small errors can accumulate as 
appearance model is updated

– Points may appear or disappear: need to be 
able to add/delete tracked points
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Feature Tracking

• Given two subsequent frames, estimate the point 
translation

• Key assumptions of Lucas-Kanade Tracker
• Brightness constancy:  projection of the same point looks the 

same in every frame
• Small motion: points do not move very far
• Spatial coherence: points move like their neighbors

I(x,y,t) I(x,y,t+1)
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• Brightness Constancy Equation:

The Brightness Constancy Constraint

tyx IvIuItyxItvyuxI  ),,()1,,(

),(),,( 1,  tvyuxItyxI
Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

I(x,y,t) I(x,y,t+1)

0 tyx IvIuIHence,

Image derivative along x

  0IvuI t
T 

tyx IvIuItyxItvyuxI  ),,()1,,(

Difference over frames
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• How many equations and unknowns per pixel?

The component of the motion perpendicular to the 
gradient (i.e., parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 
so does (u+u’, v+v’ ) if

•One equation (this is a scalar equation!), two unknowns (u,v)

  0IvuI t
T 

  0'v'uI T 

Can we use this equation to recover image motion (u,v) at 
each pixel?
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The Brightness Constancy Constraint



The Aperture Problem

Actual motion
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The Aperture Problem

Perceived motion
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The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion 23



The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion 24



Solving the  Ambiguity…
• How to get more equations for a pixel?
• Spatial coherence constraint
• Assume the pixel’s neighbors have the same (u,v)

– If we use a 5x5 window, that gives us 25 equations per pixel
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• Least squares problem:

Solving the  Ambiguity…
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Matching Patches across Images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by
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Conditions for Solvability
Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable?  I.e., what are good points to 
track?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues 1 and 2 of ATA should not be too small
• ATA should be well-conditioned

– 1/ 2 should not be too large (1 = largest eigenvalue)

Criteria for Harris corner detector 
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• Eigenvectors and eigenvalues of ATA 
relate to edge direction and magnitude 
• The eigenvector associated with the larger 

eigenvalue points in the direction of fastest 
intensity change

• The other eigenvector is orthogonal to it

M = ATA is the second moment matrix !
(Harris corner detector…)
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Low-texture region

– gradients have small magnitude
– small 1, small 2
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Edge

– gradients very large or very small
– large 1, small 2
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High-texture Region

– gradients are different, large magnitudes
– large 1, large 2
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The Aperture Problem Resolved

Actual motion
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The Aperture Problem Resolved

Perceived motion
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Dealing with Larger Motion: 
Iterative Refinement

1. Initialize (x’,y’) = (x,y)
2. Compute (u,v) by

3. Shift window by (u, v): x’=x’+u; y’=y’+v;
4. Recalculate It
5. Repeat steps 2-4 until change is small

• Use interpolation for subpixel values

2nd moment matrix for feature 
patch in first image displacement

It = I(x’, y’, t+1) - I(x, y, t) 

Original (x,y) position
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image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Dealing with Larger Motion: 
Coarse-to-Fine Registration

run iterative L-K

run iterative L-K

upsample

.

.

.
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Shi-Tomasi Feature Tracker
• Find good features using eigenvalues of second-

moment matrix (e.g., Harris detector or threshold on 
the smallest eigenvalue)
– Key idea: “good” features to track are the ones whose 

motion can be estimated reliably

• Track from frame to frame with Lucas-Kanade
– This amounts to assuming a translation model for 

frame-to-frame feature movement

• Check consistency of tracks by affine registration to 
the first observed instance of the feature
– Affine model is more accurate for larger displacements
– Comparing to the first frame helps to minimize drift
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Feature Tracking Examples
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Feature Tracking Examples

39Image by Sudipta Sinha et al.



Feature Tracking Examples

40Gyro-assisted KLT tracking. Image by Myung Hwangbo



Summary of KLT tracking
• Find a good point to track (Harris corners)

• Use intensity second moment matrix and 
difference across frames to find displacement

• Iterate and use coarse-to-fine search to deal with 
larger movements

• When creating long tracks, check appearance of 
registered patch against appearance of initial 
patch to find points that have drifted
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Implementation issues

• Window size
– Small window more sensitive to noise and may miss 

larger motions (without pyramid)
– Large window more likely to cross an occlusion 

boundary (and it’s slower)

• Weighting the window
– Common to apply weights so that center matters more 

(e.g., with Gaussian)



Why not just do local template 
matching?

• Slow (need to check more locations)

• Does not give subpixel alignment (or 
becomes much slower)
– Even pixel alignment may not be good enough to 

prevent drift

• May be useful as a step in tracking if there 
are large motions



Kanade-Lucas-Tomasi Tracking
• Bruce D. Lucas and Takeo Kanade. An iterative image 

registration technique with an application to stereo 
vision. In Proceedings of the 7th International 
Conference on Artificial Intelligence, pages 674–679, 
August 1981.

• Carlo Tomasi and Takeo Kanade. Detection and tracking 
of point features. Technical Report CMU-CS-91-132, 
Carnegie Mellon University, April 1991.

• Jianbo Shi and Carlo Tomasi. Good features to track. In 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pages 593–600, 1994.

• Code: http://www.ces.clemson.edu/~stb/klt/
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Dense Motion Estimation

Based on slides by K. Grauman
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Video
• A video is a sequence of frames captured over time
• Now our image data is a function of space 

(x, y) and time (t)



Uses of motion

• Estimating 3D structure
• Segmenting objects based on motion 

cues
• Learning dynamical models
• Recognizing events and activities
• Improving video quality (motion 

stabilization)



Motion field
• The motion field is the projection of the 3D scene 

motion into the image



Figure from Michael Black, Ph.D. Thesis

Length of flow 
vectors inversely 
proportional to 
depth Z of 3d 
point

points closer to the camera move more 
quickly across the image plane

Motion field + camera motion



Motion field + camera motion

Zoom out Zoom in Pan right to left



Motion estimation techniques
• Direct methods

– Directly recover image motion at each pixel from spatio-
temporal image brightness variations

– Dense motion fields, but sensitive to appearance 
variations

– Suitable for video and when image motion is small 

• Feature-based methods
– Extract visual features (corners, textured areas) and 

track them over multiple frames
– Sparse motion fields, but more robust tracking
– Suitable when image motion is large (10s of pixels)



Optical Flow

• Definition: optical flow is the apparent
motion of brightness patterns in the image

• Ideally, optical flow would be the same as 
the motion field

• Have to be careful: apparent motion can 
be caused by lighting changes without any 
actual motion



Apparent motion != motion field

Figure from Horn book



Lucas-Kanade Optical Flow

• Same as Lucas-Kanade feature tracking, 
but for each pixel
– As we saw, works better for textured pixels

• Operations can be done one frame at a 
time, rather than pixel by pixel
– Efficient
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Iterative Refinement
• Iterative Lukas-Kanade Algorithm

1. Estimate displacement at each pixel by solving Lucas-
Kanade equations

2. Warp I(t) towards I(t+1) using the estimated flow field
- Basically, just interpolation

3. Repeat until convergence



image Iimage H

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow 
estimation



Errors in Lucas-Kanade

• The motion is large
– Possible Fix: Keypoint matching

• A point does not move like its neighbors
– Possible Fix: Region-based matching

• Brightness constancy does not hold
– Possible Fix: Gradient constancy



State-of-the-art optical flow
Start with something similar to Lucas-Kanade
+ gradient constancy
+ energy minimization with smoothing term
+ region matching
+ keypoint matching (long-range)

Large displacement optical flow, Brox et al., CVPR 2009

Region-based +Pixel-based +Keypoint-based



State-of-the-art optical flow

Image by J. Wulff, D. Sun and M. Black

Two examples of applications of layered models. Top row: From a sequence of images (a), a 
layered model can extract the layer assignments (b) and compute highly accurate flow (c), 
especially at motion boundaries. Bottom row: Using a layered model, a motion blurred sequence 
(d) can be decomposed into foreground (e) and background (f), which can then be separately 
deblurred.



Grouping and Segmentation

Based on slides by D. Hoiem
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German: Gestalt - "form" or "whole”

Berlin School, early 20th century
Kurt Koffka, Max Wertheimer, and Wolfgang Köhler 

View of brain: 
• whole is more than the sum of its parts 
• holistic
• parallel 
• analog 
• self-organizing tendencies 

Slide from S. Saverese

Gestalt psychology or gestaltism



Muller-Lyer Illusion





Principles of perceptual organization

From Steve Lehar: The Constructive Aspect of Visual Perception



Principles of perceptual organization



Gestaltists do not believe in 
coincidence



Emergence



From Steve Lehar: The Constructive Aspect of Visual Perception

Grouping by invisible completion



From Steve Lehar: The Constructive Aspect of Visual Perception

Grouping involves global interpretation



Gestalt cues

• Good intuition and basic principles for 
grouping

• Basis for many ideas in segmentation and 
occlusion reasoning

• Some (e.g., symmetry) are difficult to 
implement in practice



Image segmentation

Goal: Group pixels into meaningful or 
perceptually similar regions



Segmentation for efficiency: 
“superpixels”

[Felzenszwalb and Huttenlocher 2004]



Segmentation for feature support

50x50 Patch50x50 Patch



Segmentation for object proposals

“Selective Search” [Sande, Uijlings et al. ICCV 2011, IJCV 2013]

[Endres Hoiem ECCV 2010, IJCV 2014]



Segmentation as the Endgoal

Rother et al. 2004



Types of segmentations

Oversegmentation Undersegmentation

Multiple Segmentations



Major processes for segmentation

• Bottom-up: group tokens with similar features
• Top-down: group tokens that likely belong to the 

same object

[Levin and Weiss 2006]



Slide Credits

• This set of sides contains contributions
kindly made available by the following authors
– Derek Hoiem
– Kristen Grauman
– Michael Black 
– Takeo Kanade
– Steve Lehar
– Steve Seitz 
– Tomas Svoboda 
– Richard Szeliski
– Carlo Tomasi


