
CS 558: Computer Vision
5th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1

Overview

• Hough Transform
• Template Matching
• Image Alignment

– Based on slides by S. Lazebnik, K. Grauman
and D. Hoiem

Fitting: The Hough transform

Slides based on S. Lazebnik’s and K. Grauman’s slides

Voting schemes

• Let each feature vote for all the models
that are compatible with it

• Hopefully the noise features will not vote
consistently for any single model

Hough transform
• An early type of voting scheme
• General outline:

– Discretize parameter space into bins
– For each feature point in the image, put a vote in every bin in the

parameter space that could have generated this point
– Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int.
Conf. High Energy Accelerators and Instrumentation, 1959

Image space Hough parameter space

Parameter space representation
• A line in the image corresponds to a point in

Hough space

Image space Hough parameter space

Source: S. Seitz

Parameter space representation
• What does a point (x0, y0) in the image space

map to in the Hough space?

Image space Hough parameter space

Parameter space representation
• What does a point (x0, y0) in the image space

map to in the Hough space?
– Answer: the solutions of b = –x0m + y0

– This is a line in Hough space
Image space Hough parameter space

Parameter space representation

• Where is the line that contains both (x0, y0) and
(x1, y1)?

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Parameter space representation
• Where is the line that contains both (x0, y0) and

(x1, y1)?
– It is the intersection of the lines b = –x0m + y0 and b = –

x1m + y1

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Parameter space representation
• Where is the line that contains both (x0, y0) and

(x1, y1)?
– It is the intersection of the lines b = –x0m + y0 and b = –

x1m + y1

Image space Hough parameter space

x

y

m

b

• Problems with the (m,b) space:
– Unbounded parameter domains
– Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

  sincos yx

Each point (x,y) will add a sinusoid in the (,) parameter space

Algorithm outline
• Initialize accumulator H

to all zeros
• For each feature point (x,y)

in the image
For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ, ρ) where H(θ, ρ) is a
local maximum
– The detected line in the image is given by

ρ = x cos θ + y sin θ

ρ

θ

features votes

Basic illustration

A more complicated image

http://ostatic.com/files/images/ss_hough.jpg

Original image Canny edges

Vote space and top peaks

Kristen Grauman

Showing longest segments found

Kristen Grauman

features votes

Effect of noise

• Peak gets fuzzy and hard to locate

Effect of noise
• Number of votes for a line of 20 points with

increasing noise:

Random points

• Uniform noise can lead to spurious peaks in the array
features votes

Random points
• As the level of uniform noise increases, the

maximum number of votes increases too:

Dealing with noise

• Choose a good grid / discretization
– Too coarse: large vote counts obtained when too

many different lines correspond to a single bucket
– Too fine: miss lines because some points that are not

exactly collinear cast votes for different buckets

• Increment neighboring bins (smoothing in
accumulator array)

• Try to get rid of irrelevant features
– E.g., take only edge points with significant gradient

magnitude

Incorporating image gradients

• Recall: when we detect an
edge point, we also know its
gradient direction

• But this means that the line
is uniquely determined!

• Modified Hough transform:

• For each edge point (x,y)
θ = gradient orientation at (x,y)
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end

Hough transform for circles

• How many dimensions will the parameter
space have?

• Given an unoriented edge point, what are
all possible bins that it can vote for?

• What about an oriented edge point?

Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii 

Image space Hough space a

b

Kristen Grauman

Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii 

Image space

Intersection:
most votes for
center occur
here.

Kristen Grauman

Hough space

Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii 

Hough spaceImage space

b

a

r

?

Kristen Grauman

Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii 

Hough spaceImage space

b

a

r

Kristen Grauman

Hough transform for circles

),(),(yxIryx 

x

y

(x,y) x

y

r

),(),(yxIryx 

Image space Hough space

• For an unknown radius r, known gradient direction

Hough transform for circles

For every edge pixel (x,y) :
For each possible radius value r:

For each possible gradient direction θ:
// or use estimated gradient at (x,y)

a = x – r cos(θ) // column
b = y + r sin(θ) // row
H[a,b,r] += 1

end
end

Time complexity per edgel?

Kristen Grauman

Original Edges

Example: detecting circles with Hough
Votes: Penny

Note: a different Hough transform (with separate accumulators)
was used for each circle radius (quarters vs. penny).

Edges

Example: detecting circles with Hough
Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra

Example: iris detection

• Hemerson Pistori and Eduardo Rocha Costa
http://rsbweb.nih.gov/ij/plugins/hough-circles.html

Gradient+threshold Hough space (fixed radius) Max detections

Kristen Grauman

Generalized Hough transform
• We want to find a template defined by its reference point

(center) and several distinct types of landmark points in
stable spatial configuration

c

Template

Generalized Hough transform
• Template representation: for each type

of landmark point, store all possible
displacement vectors towards the center

Model

Template

Generalized Hough transform
• Detecting the template:

– For each feature in a new image,
look up that feature type in the
model and vote for the possible
center locations associated with that
type in the model

Model

Test image

Application in recognition
• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation
with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision
2004

training image

visual codeword with
displacement vectors

Application in recognition
• Index displacements by “visual codeword”

test image

Voting: practical tips

• Minimize irrelevant tokens first

• Choose a good grid / discretization

• Vote for neighbors, also (smoothing in
accumulator array)

• Use direction of edge to reduce parameters by 1

• To read back which points voted for “winning”
peaks, keep tags on the votes.

Too coarseToo fine ?

Kristen Grauman

Hough transform: Discussion
• Pros

– All points processed independently
– Can deal with occlusion and gaps
– Can detect multiple instances of a model
– Some robustness to noise: noise points unlikely to

contribute consistently to any single bin
• Cons

– Complexity of search time increases exponentially with the
number of model parameters

– Non-target shapes can produce spurious peaks in
parameter space

– It’s hard to pick a good grid size

Kristen Grauman

Fitting Algorithm Summary
• Least Squares Fit

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to noise
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

Derek Hoiem

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object




























y

x
A
i

A
i

B
i

B
i

t
t

y
x

y
x

Example: solving for translation

Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution



























y

x
A
i

A
i

B
i

B
i

t
t

y
x

y
x

(tx, ty)

1. Write down objective function
2. Derived solution

a) Compute derivative
b) Compute solution

3. Computational solution
a) Write in form Ax=b
b) Solve using pseudo-inverse or eigenvalue

decomposition 


























































A
n

B
n

A
n

B
n

AB

AB

y

x

yy
xx

yy
xx

t
t


11

11

10
01

10
01

A1

A2 A3
B1

B2 B3

RANSAC solution



























y

x
A
i

A
i

B
i

B
i

t
t

y
x

y
x

(tx, ty)

1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4

Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution



























y

x
A
i

A
i

B
i

B
i

t
t

y
x

y
x

(tx, ty)

1. Initialize a grid of parameter values
2. Each matched pair casts a vote for consistent

values
3. Find the parameters with the most votes
4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches

Example: solving for translation

Template Matching

Slides based on D. Hoiem’s slides

Template matching
• Goal: find in image

• Main challenge: What is
a good similarity or
distance measure
between two patches?
– Filtering
– Zero-mean filtering
– Sum of Squares

Difference
– Normalized Cross

Correlation

Matching with filters
• Goal: find in image
• Method 0: filter the image with eye patch

Input Filtered Image

],[],[],[
,

lnkmflkgnmh
lk



What went wrong?

f = image
g = filter

Matching with filters
• Goal: find in image
• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

)],[()],[(],[
,

lnkmfglkgnmh
lk



True detections

False
detections

mean of template g

SSD
• Goal: find in image
• Method 2: SSD

Input 1- sqrt(SSD) Thresholded Image

2

,

)],[],[(],[lnkmflkgnmh
lk



True detections

SSD
• Goal: find in image
• Method 2: SSD

Input 1- sqrt(SSD)

2

,

)],[],[(],[lnkmflkgnmh
lk



What’s the potential
downside of SSD?

NCC
• Goal: find in image
• Method 3: Normalized cross-correlation

Matlab: normxcorr2(template, im)

mean image patchmean template

5.0

,

2
,

,

2

,
,

)],[()],[(

)],[)(],[(
],[














 



lk
nm

lk

nm
lk

flnkmfglkg

flnkmfglkg
nmh

NCC
• Goal: find in image
• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

NCC
• Goal: find in image
• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

Q: What is the best method to use?

A: Depends
• Zero-mean filter: fastest but not a great

matcher
• SSD: next fastest, sensitive to overall

intensity
• Normalized cross-correlation: slowest,

invariant to local average intensity and
contrast

Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

Review of Sampling

Low‐Pass
Filtered ImageImage

Gaussian
Filter Sample Low‐Res

Image

Gaussian pyramid

Source: D. Forsyth

Template Matching with Image
Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image
– In practice, scale step of 1.1 to 1.2

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps
with non-maxima suppression

Laplacian filter

Gaussian
unit impulse

Laplacian of Gaussian

Laplacian pyramid

Source: D. Forsyth

Computing Gaussian/Laplacian
Pyramid

Major uses of image pyramids

• Compression

• Object detection
– Scale search
– Features

• Detecting stable interest points

• Registration
– Course-to-fine

Alignment

Slides based on D. Hoiem’s and
S. Lazebnik’s slides

Alignment

• Alignment: find parameters of model that
maps one set of points to another

• Typically want to solve for a global
transformation that accounts for most true
correspondences

• Difficulties
– Noise (perturbation around true features,

matches, etc.)
– Outliers
– Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate change
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)


















y
x

y
x

T
'
'

Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides): A.
Efros and/or S. Seitz

Scaling
• Scaling a coordinate means multiplying each of its components

by a scalar
• Uniform scaling means this scalar is the same for all

components:

 2

• Non-uniform scaling: different scalars per component:

Scaling

X  2,
Y  0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy
axx



'
'


























y
x

b
a

y
x

0
0

'
'

scaling matrix S

2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()
y’ = x sin() + y cos()

2-D Rotation

Polar coordinates…
x = r cos ()
y = r sin ()
x’ = r cos ( + )
y’ = r sin ( + )

Trig Identity…
x’ = r cos() cos() – r sin() sin()
y’ = r sin() cos() + r cos() sin()

Substitute…
x’ = x cos() - y sin()
y’ = x sin() + y cos()

(x, y)

(x’, y’)



2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,
– x’ is a linear combination of x and y
– y’ is a linear combination of x and y

What is the inverse transformation?
– Rotation by –
– For rotation matrices

   
    















 









y
x

y
x




cossin
sincos

'
'

TRR 1

R

Basic 2D transformations

TranslateRotate

ShearScale


























y
x

y
x

y

x

1
1

'
'































y
x

y
x

cossin
sincos

'
'


























y
x

s
s

y
x

y

x

0
0

'
'





































1
10
01

y
x

t
t

y
x

y

x





































1
y
x

fed
cba

y
x

Affine

Affine is any combination of
translation, scale, rotation,
shearing

Affine Transformations

Affine transformations are combinations of
• Linear transformations, and
• Translations

Properties of affine transformations:
• Lines map to lines
• Parallel lines remain parallel
• Ratios are preserved
• Closed under composition





































1
y
x

fed
cba

y
x


















































11001
'
'

y
x

fed
cba

y
x

or

Projective Transformations






































w
y
x

ihg
fed
cba

w
y
x

'
'
'Projective transformations are combos of

• Affine transformations, and
• Projective warps

Properties of projective transformations:
• Lines map to lines
• Parallel lines do not necessarily remain parallel
• Ratios are not preserved
• Closed under composition
• Models change of basis
• Projective matrix is defined up to a scale (8 DOF)

2D image transformations
(reference table)

Image alignment: Applications

Recognition
of object
instances

Image alignment: Challenges

Small degree of overlap

Occlusion,
clutter

Intensity changes

Feature-based alignment
• Search sets of feature matches that agree in terms of:

a) Local appearance
b) Geometric configuration

?

Alignment as fitting

• Previously: fitting a model to features in one
image


i

i Mx),(residual
Find model M that minimizes

M

xi

Alignment as fitting

• Alignment: fitting a model to a
transformation between pairs of features
(matches) in two images

 
i

ii xxT)),((residual

Find transformation T
that minimizesT

xi
xi'

Let’s start with affine
transformations

• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar

objects
• Can be used to initialize fitting for more complex models

Fitting an affine transformation
• Assume we know the correspondences, how do

we get the transformation?

),(ii yx 
),(ii yx






































2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i

tMxx  ii
Want to find M, t to minimize





n

i
ii

1

2|||| tMxx

Fitting an affine transformation

),(ii yx 
),(ii yx






































2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i












































































i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

Fitting an affine transformation

• Linear system with six unknowns
• Each match gives us two linearly

independent equations: need at least three
to solve for the transformation parameters












































































i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

Fitting a plane projective
transformation

• Homography: plane projective transformation
(transformation taking a quad to another
arbitrary quad)

Homography
• The transformation between two views of a planar

surface

• The transformation between images from two cameras
that share the same center

Application: Panorama stitching

Source: Hartley & Zisserman

Fitting a homography
• Homogeneous coordinates (more later)

Converting to homogeneous
image coordinates

Converting from homogeneous
image coordinates




















































11 333231

232221

131211

y
x

hhh
hhh
hhh

y
x



Fitting a homography
• Equation for homography:

ii xHx 




















































11 333231

232221

131211

i

i

i

i

y
x

hhh
hhh
hhh

y
x


0 ii xHx

























































i
T

ii
T

i

i
T

ii
T

i
T

i
T

i

i
T

i
T

i
T

i

i

yx
x

y
y
x

xhxh
xhxh
xhxh

xh
xh
xh

3

2

1

12

31

23

1

0
0

0
0

3

2

1








































h
h
h

xx
xx

xx

TT
ii

T
ii

T
ii

TT
i

T
ii

T
i

T

xy
x

y
3 equations,

only 2 linearly
independent

Direct linear transform

• H has 8 degrees of freedom (9 parameters, but scale is
arbitrary)

• One match gives us two linearly independent equations
• Homogeneous least squares: find h minimizing ||Ah||2

– Eigenvector of ATA corresponding to smallest eigenvalue
– Four matches needed for a minimal solution

0

0
0

0
0

3

2

1111

111
















































h
h
h

xx
xx

xx
xx

T
nn

TT
n

T
nn

T
n

T

TTT

TTT

x
y

x
y

 0hA

Robust feature-based alignment
• So far, we’ve assumed that we are given a set of

“ground-truth” correspondences between the two
images we want to align

• What if we don’t know the correspondences?

),(ii yx 
),(ii yx

Robust feature-based alignment
• So far, we’ve assumed that we are given a set of

“ground-truth” correspondences between the two
images we want to align

• What if we don’t know the correspondences?

?

• Extract features

Robust feature-based alignment

Robust feature-based alignment

• Extract features
• Compute putative matches

• Extract features
• Compute putative matches
• Loop:

– Hypothesize transformation T

Robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:

– Hypothesize transformation T
– Verify transformation (search for other

matches consistent with T)

Robust feature-based alignment

• Extract features
• Compute putative matches
• Loop:

– Hypothesize transformation T
– Verify transformation (search for other

matches consistent with T)

Robust feature-based alignment

Generating putative correspondences

?

• Need to compare feature descriptors of
local patches surrounding interest points

() ()=
?

feature
descriptor

feature
descriptor

?

Generating putative correspondences

Feature descriptors

• Recall: feature detection and description

• Simplest descriptor: vector of raw intensity
values

• How to compare two such vectors?
– Sum of squared differences (SSD)

• Not invariant to intensity change

– Normalized correlation

• Invariant to affine intensity change

Feature descriptors

  
i

ii vu 2)SSD(vu,




































j
j

j
j

i ii

vu

vu

22)()(

))((
||||
)(

||||
)()(

vu

vu
vv
vv

uu
uuvu,

Disadvantage of intensity vectors as descriptors

• Small deformations can affect the matching
score a lot

Slide Credits

• This set of sides contains contributions
kindly made available by the following
authors
– Derek Hoiem
– Svetlana Lazebnik
– Kristen Grauman
– Alexei Efros
– David Forsyth
– Steve Seitz

