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Overview

• Hough Transform
• Template Matching
• Image Alignment

– Based on slides by S. Lazebnik, K. Grauman
and D. Hoiem



Fitting: The Hough transform

Slides based on S. Lazebnik’s and K. Grauman’s slides



Voting schemes

• Let each feature vote for all the models 
that are compatible with it

• Hopefully the noise features will not vote 
consistently for any single model



Hough transform
• An early type of voting scheme
• General outline: 

– Discretize parameter space into bins
– For each feature point in the image, put a vote in every bin in the 

parameter space that could have generated this point
– Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. 
Conf. High Energy Accelerators and Instrumentation, 1959 

Image space Hough parameter space



Parameter space representation
• A line in the image corresponds to a point in 

Hough space

Image space Hough parameter space

Source: S. Seitz



Parameter space representation
• What does a point (x0, y0) in the image space 

map to in the Hough space?

Image space Hough parameter space



Parameter space representation
• What does a point (x0, y0) in the image space 

map to in the Hough space?
– Answer: the solutions of b = –x0m + y0

– This is a line in Hough space
Image space Hough parameter space



Parameter space representation

• Where is the line that contains both (x0, y0) and 
(x1, y1)?

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1



Parameter space representation
• Where is the line that contains both (x0, y0) and 

(x1, y1)?
– It is the intersection of the lines b = –x0m + y0 and b = –

x1m + y1

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1



Parameter space representation
• Where is the line that contains both (x0, y0) and 

(x1, y1)?
– It is the intersection of the lines b = –x0m + y0 and b = –

x1m + y1

Image space Hough parameter space

x

y

m

b



• Problems with the (m,b) space:
– Unbounded parameter domains
– Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

  sincos yx

Each point (x,y) will add a sinusoid in the (,) parameter space 



Algorithm outline
• Initialize accumulator H 

to all zeros
• For each feature point (x,y) 

in the image
For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ, ρ) where H(θ, ρ) is a 
local maximum
– The detected line in the image is given by 

ρ = x cos θ + y sin θ

ρ

θ



features votes

Basic illustration



A more complicated image

http://ostatic.com/files/images/ss_hough.jpg



Original image Canny edges

Vote space and top peaks

Kristen Grauman



Showing longest segments found

Kristen Grauman



features votes

Effect of noise

• Peak gets fuzzy and hard to locate



Effect of noise
• Number of votes for a line of 20 points with 

increasing noise:



Random points

• Uniform noise can lead to spurious peaks in the array
features votes



Random points
• As the level of uniform noise increases, the 

maximum number of votes increases too:



Dealing with noise

• Choose a good grid / discretization
– Too coarse: large vote counts obtained when too 

many different lines correspond to a single bucket
– Too fine: miss lines because some points that are not 

exactly collinear cast votes for different buckets

• Increment neighboring bins (smoothing in 
accumulator array)

• Try to get rid of irrelevant features 
– E.g., take only edge points with significant gradient 

magnitude



Incorporating image gradients

• Recall: when we detect an 
edge point, we also know its 
gradient direction

• But this means that the line 
is uniquely determined!

• Modified Hough transform:

• For each edge point (x,y) 
θ = gradient orientation at (x,y)
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end



Hough transform for circles

• How many dimensions will the parameter 
space have?

• Given an unoriented edge point, what are 
all possible bins that it can vote for?

• What about an oriented edge point?



Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Image space Hough space a

b

Kristen Grauman



Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Image space

Intersection: 
most votes for 
center occur 
here.

Kristen Grauman

Hough space



Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

b

a

r

?

Kristen Grauman



Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

b

a

r

Kristen Grauman



Hough transform for circles 

),(),( yxIryx 
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Image space Hough space

• For an unknown radius r, known gradient direction



Hough transform for circles

For every edge pixel (x,y) : 
For each possible radius value r:

For each possible gradient direction θ: 
// or use estimated gradient at (x,y)

a = x – r cos(θ) // column
b = y + r sin(θ)  // row
H[a,b,r] += 1

end
end

Time complexity per edgel?

Kristen Grauman



Original Edges

Example: detecting circles with Hough
Votes: Penny

Note: a different Hough transform (with separate accumulators) 
was used for each circle radius (quarters vs. penny).



Edges

Example: detecting circles with Hough
Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra



Example: iris detection

• Hemerson Pistori and Eduardo Rocha Costa 
http://rsbweb.nih.gov/ij/plugins/hough-circles.html

Gradient+threshold Hough space (fixed radius) Max detections

Kristen Grauman



Generalized Hough transform
• We want to find a template defined by its reference point 

(center) and several distinct types of landmark points in 
stable spatial configuration

c

Template



Generalized Hough transform
• Template representation: for each type 

of landmark point, store all possible 
displacement vectors towards the center

Model

Template



Generalized Hough transform
• Detecting the template:

– For each feature in a new image, 
look up that feature type in the 
model and vote for the possible 
center locations associated with that 
type in the model

Model

Test image



Application in recognition
• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation 
with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 
2004

training image

visual codeword with
displacement vectors



Application in recognition
• Index displacements by “visual codeword”

test image



Voting: practical tips

• Minimize irrelevant tokens first

• Choose a good grid / discretization

• Vote for neighbors, also (smoothing in 
accumulator array)

• Use direction of edge to reduce parameters by 1

• To read back which points voted for “winning” 
peaks, keep tags on the votes.

Too coarseToo fine ?

Kristen Grauman



Hough transform: Discussion
• Pros

– All points processed independently
– Can deal with occlusion and gaps
– Can detect multiple instances of a model
– Some robustness to noise: noise points unlikely to 

contribute consistently to any single bin
• Cons

– Complexity of search time increases exponentially with the 
number of model parameters

– Non-target shapes can produce spurious peaks in 
parameter space

– It’s hard to pick a good grid size

Kristen Grauman



Fitting Algorithm Summary
• Least Squares Fit 

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to noise
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

Derek Hoiem



A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution
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1. Write down objective function
2. Derived solution

a) Compute derivative
b) Compute solution

3. Computational solution
a) Write in form Ax=b
b) Solve using pseudo-inverse or eigenvalue
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A1

A2 A3
B1

B2 B3

RANSAC solution
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1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

Problem: outliers
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Example: solving for translation



A1

A2 A3
B1

B2 B3

Hough transform solution
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1. Initialize a grid of parameter values
2. Each matched pair casts a vote for consistent 

values
3. Find the parameters with the most votes
4. Solve using least squares with inliers

A4
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B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches

Example: solving for translation



Template Matching

Slides based on D. Hoiem’s slides



Template matching
• Goal: find       in image

• Main challenge: What is 
a good similarity or 
distance measure 
between two patches?
– Filtering
– Zero-mean filtering
– Sum of Squares 

Difference
– Normalized Cross 

Correlation



Matching with filters
• Goal: find       in image
• Method 0: filter the image with eye patch

Input Filtered Image

],[],[],[
,

lnkmflkgnmh
lk



What went wrong?

f = image
g = filter



Matching with filters
• Goal: find       in image
• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

)],[()],[(],[
,

lnkmfglkgnmh
lk



True detections

False 
detections

mean of template g



SSD
• Goal: find       in image
• Method 2: SSD

Input 1- sqrt(SSD) Thresholded Image

2

,

)],[],[(],[ lnkmflkgnmh
lk



True detections



SSD
• Goal: find       in image
• Method 2: SSD

Input 1- sqrt(SSD)

2

,

)],[],[(],[ lnkmflkgnmh
lk



What’s the potential 
downside of SSD?



NCC
• Goal: find       in image
• Method 3: Normalized cross-correlation

Matlab: normxcorr2(template, im)

mean image patchmean template
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NCC
• Goal: find       in image
• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections



NCC
• Goal: find       in image
• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections



Q: What is the best method to use?

A: Depends
• Zero-mean filter: fastest but not a great 

matcher
• SSD: next fastest, sensitive to overall 

intensity
• Normalized cross-correlation: slowest, 

invariant to local average intensity and 
contrast



Q: What if we want to find larger or smaller eyes?

A: Image Pyramid



Review of Sampling

Low‐Pass 
Filtered ImageImage

Gaussian
Filter Sample Low‐Res 

Image



Gaussian pyramid

Source: D. Forsyth



Template Matching with Image 
Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image
– In practice, scale step of 1.1 to 1.2

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps 
with non-maxima suppression



Laplacian filter

Gaussian
unit impulse

Laplacian of Gaussian



Laplacian pyramid

Source: D. Forsyth



Computing Gaussian/Laplacian
Pyramid



Major uses of image pyramids

• Compression

• Object detection
– Scale search
– Features

• Detecting stable interest points 

• Registration
– Course-to-fine



Alignment

Slides based on D. Hoiem’s and 
S. Lazebnik’s slides



Alignment

• Alignment: find parameters of model that 
maps one set of points to another

• Typically want to solve for a global 
transformation that accounts for most true 
correspondences

• Difficulties
– Noise (perturbation around true features, 

matches, etc.)
– Outliers
– Many-to-one matches or multiple objects



Parametric (global) warping

Transformation T is a coordinate change
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)
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Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides): A. 
Efros and/or S. Seitz



Scaling
• Scaling a coordinate means multiplying each of its components 

by a scalar
• Uniform scaling means this scalar is the same for all 

components:

 2



• Non-uniform scaling: different scalars per component:

Scaling

X  2,
Y  0.5



Scaling

• Scaling operation:

• Or, in matrix form:

byy
axx
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2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()
y’ = x sin() + y cos()



2-D Rotation

Polar coordinates…
x = r cos ()
y = r sin ()
x’ = r cos ( + )
y’ = r sin ( + )

Trig Identity…
x’ = r cos() cos() – r sin() sin()
y’ = r sin() cos() + r cos() sin()

Substitute…
x’ = x cos() - y sin()
y’ = x sin() + y cos()

(x, y)

(x’, y’)





2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,
– x’ is a linear combination of x and y
– y’ is a linear combination of x and y

What is the inverse transformation?
– Rotation by –
– For rotation matrices

   
    















 









y
x

y
x




cossin
sincos

'
'

TRR 1

R



Basic 2D transformations

TranslateRotate

ShearScale
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Affine

Affine is any combination of 
translation, scale, rotation, 
shearing



Affine Transformations

Affine transformations are combinations of 
• Linear transformations, and
• Translations

Properties of affine transformations:
• Lines map to lines
• Parallel lines remain parallel
• Ratios are preserved
• Closed under composition
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Projective Transformations
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'Projective transformations are combos of 

• Affine transformations, and
• Projective warps

Properties of projective transformations:
• Lines map to lines
• Parallel lines do not necessarily remain parallel
• Ratios are not preserved
• Closed under composition
• Models change of basis
• Projective matrix is defined up to a scale (8 DOF)



2D image transformations 
(reference table)



Image alignment: Applications

Recognition
of object
instances



Image alignment: Challenges

Small degree of overlap

Occlusion,
clutter

Intensity changes



Feature-based alignment
• Search sets of feature matches that agree in terms of:

a) Local appearance
b) Geometric configuration

?



Alignment as fitting

• Previously: fitting a model to features in one 
image


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M
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Alignment as fitting

• Alignment: fitting a model to a 
transformation between pairs of features 
(matches) in two images
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xi'



Let’s start with affine 
transformations

• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar 

objects
• Can be used to initialize fitting for more complex models



Fitting an affine transformation
• Assume we know the correspondences, how do 

we get the transformation?
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Fitting an affine transformation
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Fitting an affine transformation

• Linear system with six unknowns
• Each match gives us two linearly 

independent equations: need at least three 
to solve for the transformation parameters
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Fitting a plane projective 
transformation

• Homography: plane projective transformation 
(transformation taking a quad to another 
arbitrary quad)



Homography
• The transformation between two views of a planar 

surface

• The transformation between images from two cameras 
that share the same center



Application: Panorama stitching

Source: Hartley & Zisserman



Fitting a homography
• Homogeneous coordinates (more later)

Converting to homogeneous
image coordinates

Converting from homogeneous
image coordinates
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Fitting a homography
• Equation for homography:

ii xHx 
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Direct linear transform

• H has 8 degrees of freedom (9 parameters, but scale is 
arbitrary)

• One match gives us two linearly independent equations
• Homogeneous least squares: find h minimizing ||Ah||2

– Eigenvector of ATA corresponding to smallest eigenvalue
– Four matches needed for a minimal solution
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Robust feature-based alignment
• So far, we’ve assumed that we are given a set of 

“ground-truth” correspondences between the two 
images we want to align

• What if we don’t know the correspondences?

),( ii yx 
),( ii yx



Robust feature-based alignment
• So far, we’ve assumed that we are given a set of 

“ground-truth” correspondences between the two 
images we want to align

• What if we don’t know the correspondences?

?



• Extract features

Robust feature-based alignment



Robust feature-based alignment

• Extract features
• Compute putative matches



• Extract features
• Compute putative matches
• Loop:

– Hypothesize transformation T

Robust feature-based alignment



• Extract features
• Compute putative matches
• Loop:

– Hypothesize transformation T
– Verify transformation (search for other 

matches consistent with T)

Robust feature-based alignment



• Extract features
• Compute putative matches
• Loop:

– Hypothesize transformation T
– Verify transformation (search for other 

matches consistent with T)

Robust feature-based alignment



Generating putative correspondences

?



• Need to compare feature descriptors of 
local patches surrounding interest points

( ) ( )=
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feature
descriptor
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Generating putative correspondences



Feature descriptors

• Recall: feature detection and description



• Simplest descriptor: vector of raw intensity 
values

• How to compare two such vectors?
– Sum of squared differences (SSD)

• Not invariant to intensity change

– Normalized correlation

• Invariant to affine intensity change

Feature descriptors
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Disadvantage of intensity vectors as descriptors

• Small deformations can affect the matching 
score a lot
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