
CS 558: Computer Vision
4th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1

Overview

• Keypoint matching
• Hessian detector
• Blob detection
• Feature descriptors
• Fitting
• RANSAC

– Based on slides by S. Lazebnik and D. Hoiem

2

Overview of Keypoint Matching

K. Grauman, B. Leibe

Af Bf

A1

A2 A3

Tffd BA ),(

1. Find a set of
distinctive key-
points

3. Extract and
normalize the
region content

2. Define a region
around each
keypoint

4. Compute a local
descriptor from the
normalized region

5. Match local
descriptors

Goals for Keypoints

Detect points that are repeatable and distinctive

Key trade-offs

More Repeatable More Points

A1

A2 A3

Detection

More Distinctive More Flexible

Description

Robust to occlusion
Works with less texture

Minimize wrong matches Robust to expected variations
Maximize correct matches

Robust detection
Precise localization

Hessian Detector [Beaudet78]

• Hessian determinant

K. Grauman, B. Leibe











yyxy

xyxx

II
II

IHessian)(

Ixx

Iyy

Ixy

Intuition: Search for strong
curvature in two orthogonal
directions

Hessian Detector [Beaudet78]

• Hessian determinant

K. Grauman, B. Leibe

Ixx

Iyy

Ixy

)()()())(det(2 xIxIxIxHessian xyyyxx 

2)^(. xyyyxx III 
In Matlab:











),(),(
),(),(

),(




xIxI
xIxI

xHessian
yyxy

xyxx

1 2

1 2

det
trace

M
M

 
 


 

Find maxima of determinant

Hessian Detector – Responses [Beaudet78]

Effect: Responses mainly on
corners and strongly textured
areas.

Hessian Detector – Responses [Beaudet78]

So far: can localize in x-y, but not scale

Automatic Scale Selection

K. Grauman, B. Leibe

)),(()),((
11

  xIfxIf
mm iiii 

How to find corresponding patch sizes?

Automatic Scale Selection
• Function responses for increasing scale (scale signature)

K. Grauman, B. Leibe
)),((

1
xIf

mii )),((
1

xIf
mii 



K. Grauman, B. Leibe
)),((

1
xIf

mii )),((
1

xIf
mii 



• Function responses for increasing scale (scale signature)

Automatic Scale Selection

K. Grauman, B. Leibe
)),((

1
xIf

mii )),((
1

 xIf
mii 

Automatic Scale Selection
• Function responses for increasing scale (scale signature)

Blob detection

Feature detection with scale selection
• We want to extract features with characteristic

scale that is covariant with the image
transformation

Blob detection: Basic idea
• To detect blobs, convolve the image with a

“blob filter” at multiple scales and look for
extrema of filter response in the resulting
scale space

Blob detection: Basic idea

• Find maxima and minima of blob filter
response in space and scale

* =

maxima

minima

Source: N. Snavely

Blob filter
• Laplacian of Gaussian: Circularly symmetric

operator for blob detection in 2D

2

2

2

2
2

y
g

x
gg










Recall: Edge detection

g
dx
df 

f

g
dx
d

Source: S. Seitz

Edge

Derivative
of Gaussian

Edge = maximum
of derivative

Edge detection, Take 2

g
dx
df 2

2



f

g
dx
d

2

2

Edge

Second derivative
of Gaussian
(Laplacian)

Edge = zero crossing
of second derivative

Source: S. Seitz

From edges to blobs
• Edge = ripple
• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob

maximum

Scale selection
• We want to find the characteristic scale of the

blob by convolving it with Laplacians at several
scales and looking for the maximum response

• However, Laplacian response decays as scale
increases:

increasing σoriginal signal
(radius=8)

Scale normalization
• The response of a derivative of Gaussian

filter to a perfect step edge decreases as σ
increases

 2
1

Scale normalization

• The response of a derivative of Gaussian
filter to a perfect step edge decreases as σ
increases

• To keep response the same (scale-
invariant), must multiply Gaussian
derivative by σ

• Laplacian is the second Gaussian
derivative, so it must be multiplied by σ2

Effect of scale normalization

Scale-normalized Laplacian response

Unnormalized Laplacian responseOriginal signal

maximum

Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric
operator for blob detection in 2D
















 2

2

2

2
22

norm y
g

x
gg Scale-normalized:

Scale selection
• At what scale does the Laplacian achieve a maximum

response to a binary circle of radius r?
• To get maximum response, the zeros of the Laplacian

have to be aligned with the circle
• The Laplacian is given by (up to scale):

• Therefore, the maximum response occurs at

r

image

222 2/)(222)2( yxeyx 
.2/r

circle

Laplacian

0

Characteristic scale
• We define the characteristic scale of a blob as

the scale that produces peak of Laplacian
response in the blob center

characteristic scale
T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116.

Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales

Scale-space blob detector:
Example

Scale-space blob detector: Example

Scale-space blob detector
1. Convolve image with scale-normalized

Laplacian at several scales
2. Find maxima of squared Laplacian response in

scale-space

Scale-space blob detector:
Example

• Approximating the Laplacian with a difference of
Gaussians:

 2 (, ,) (, ,)xx yyL G x y G x y   

(, ,) (, ,)DoG G x y k G x y  

(Laplacian)

(Difference of Gaussians)

Efficient implementation

Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

Maximally Stable Extremal Regions [Matas ‘02]

• Based on Watershed segmentation algorithm
• Select regions that stay stable over a large

parameter range

K. Grauman, B. Leibe

Example Results: MSER

K. Grauman, B. Leibe

Local Descriptors

• The ideal descriptor should be
– Robust
– Distinctive
– Compact
– Efficient

• Most available descriptors focus on
edge/gradient information
– Capture texture information
– Color rarely used

K. Grauman, B. Leibe

From feature detection to feature description

• Scaled and rotated versions of the same neighborhood will give
rise to blobs that are related by the same transformation

• What to do if we want to compare the appearance of these
image regions?

– Normalization: transform these regions into same-size circles
– Problem: rotational ambiguity

Eliminating rotation ambiguity
• To assign a unique orientation to circular

image windows:
– Create histogram of local gradient directions in the

patch
– Assign canonical orientation at peak of smoothed

histogram

0 2 

SIFT features
• Detected features with characteristic

scales and orientations:

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

From feature detection to feature description

• Detection is covariant:
features(transform(image)) = transform(features(image))

• Description is invariant:
features(transform(image)) = features(image)

Properties of SIFT
Extraordinarily robust detection and description technique

– Can handle changes in viewpoint
• Up to about 60 degree out-of-plane rotation

– Can handle significant changes in illumination
• Sometimes even day vs. night

– Fast and efficient—can run in real time
– Lots of code available

Source: N. Snavely

Local Descriptors: SIFT Descriptor

[Lowe, ICCV 1999]

Histogram of oriented
gradients
• Captures important texture

information
• Robust to small translations /

affine deformations
K. Grauman, B. Leibe

Details of Lowe’s SIFT algorithm
• Run DoG detector

– Find maxima in location/scale space
– Remove edge points (bad localization)

• Find all major orientations
– Bin orientations into 36 bin histogram

• Weight by gradient magnitude
• Weight by distance to center (Gaussian-weighted mean)

– Return orientations within 0.8 of peak of histogram
• Use parabola for better orientation fit

• For each (x,y,scale,orientation), create descriptor:
– Sample 16x16 gradient mag. and rel. orientation
– Bin 4x4 samples into 4x4 histograms
– Threshold values to max of 0.2, divide by L2 norm
– Final descriptor: 4x4x8 normalized histograms

Lowe IJCV 2004

r: eigenvalue ratio

Matching SIFT Descriptors
• Nearest neighbor (Euclidean distance)
• Threshold ratio of nearest to 2nd nearest descriptor

Lowe IJCV 2004

SIFT Repeatability

SIFT Repeatability

Lowe IJCV 2004

Local Descriptors: SURF

K. Grauman, B. Leibe

• Fast approximation of SIFT idea
 Efficient computation by 2D box filters &

integral images
 6 times faster than SIFT

 Equivalent quality for object identification

[Bay, ECCV’06], [Cornelis, CVGPU’08]

Local Descriptors: Shape Context

Count the number of points inside
each bin, e.g.:

Count = 4

Count = 10
...

Log-polar binning: more
precision for nearby points,
more flexibility for farther
points.

Belongie & Malik, ICCV 2001

K. Grauman, B. Leibe

Choosing a detector
• What do you want it for?

– Precise localization in x-y: Harris
– Good localization in scale: Difference of Gaussian
– Flexible region shape: MSER

• Best choice often application dependent
– Harris-/Hessian-Laplace/DoG work well for many natural

categories
– MSER works well for buildings and printed things

• Why choose?
– Get more points with more detectors

• There have been extensive evaluations/comparisons
– All detectors/descriptors shown here work well

Choosing a descriptor

• Again, need not stick to one

• For object instance recognition or stitching,
SIFT or variant is a good choice

Things to remember
• Keypoint detection: repeatable

and distinctive
– Corners, blobs, stable regions
– Harris, DoG

• Descriptors: robust and
selective
– spatial histograms of orientation
– SIFT

Fitting

Fitting
• We’ve learned how to

detect edges, corners,
blobs. Now what?

• We would like to form
a higher-level, more
compact
representation of the
features in the image
by grouping multiple
features according to a
simple model

Source: K. Grauman

Fitting
• Choose a parametric model to represent

a set of features

simple model: lines simple model: circles

complicated model: car

Fitting: Overview
• If we know which points belong to the line,

how do we find the “optimal” line parameters?
– Least squares

• What if there are outliers?
– Robust fitting, RANSAC

• What if there are many lines?
– Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
– Model selection (not covered)

Least squares line fitting
•Data: (x1, y1), …, (xn, yn)
•Line equation: yi = m xi + b
•Find (m, b) to minimize

022  YXXBX
dB
dE TT













































b
m

B
x

x
X

y

y
YXBYE

nn 1

1
 where

11
2



Pseudo-inverse solution




n

i ii bxmyE
1

2)(
(xi, yi)

y=mx+b

YXXBX TT 

)()()(2)()(2 XBXBYXBYYXBYXBYXBYE TTTT 

YXXXB TT 1)(

Problem with “vertical” least
squares

• Not rotation-invariant
• Fails completely for vertical lines

Total least squares
•Distance between point (xi, yi) and
line ax+by=d (a2+b2=1): |axi + byi – d|




n

i ii dybxaE
1

2)((xi, yi)

ax+by=d
Unit normal:

N=(a, b)

Total least squares
•Distance between point (xi, yi) and
line ax+by=d (a2+b2=1): |axi + byi – d|
•Find (a, b, d) to minimize the sum of
squared perpendicular distances 


n

i ii dybxaE
1

2)((xi, yi)

ax+by=d




n

i ii dybxaE
1

2)(

Unit normal:
N=(a, b)

Total least squares
•Distance between point (xi, yi) and
line ax+by=d (a2+b2=1): |axi + byi – d|
•Find (a, b, d) to minimize the sum of
squared perpendicular distances 


n

i ii dybxaE
1

2)((xi, yi)

ax+by=d




n

i ii dybxaE
1

2)(

Unit normal:
N=(a, b)

0)(2
1



  

n

i ii dybxa
d
E ybxay

n
bx

n
ad n

i i
n

i i    11

)()())()((

2
11

1
2 UNUN

b
a

yyxx

yyxx
yybxxaE T

nn

n

i ii 



























 



0)(2  NUU
dN
dE T

Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU
associated with the smallest eigenvalue (least squares solution
to homogeneous linear system UN = 0)

Total least squares






















yyxx

yyxx
U

nn


11































n

i
i

n

i
ii

n

i
ii

n

i
i

T

yyyyxx

yyxxxx
UU

1

2

1

11

2

)())((

))(()(

),(yx

N = (a, b)

second moment matrix

),(yyxx ii 

F&P (2nd ed.) sec. 22.1

Least squares: Robustness to noise

Problem: squared error heavily penalizes outliers

Least squares: Robustness to noise

RANSAC
• Random sample consensus (RANSAC):

Very general framework for model fitting in
the presence of outliers

• Outline
– Choose a small subset of points uniformly at

random
– Fit a model to that subset
– Find all remaining points that are “close” to the

model and reject the rest as outliers
– Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.

RANSAC for line fitting example

Source: R. Raguram

RANSAC for line fitting example

Least‐squares fit

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize‐and‐
verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize‐and‐
verify loop

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize‐and‐
verify loop

Uncontaminated sample

Source: R. Raguram

RANSAC for line fitting example

1. Randomly select
minimal subset
of points

2. Hypothesize a
model

3. Compute error
function

4. Select points
consistent with
model

5. Repeat
hypothesize‐and‐
verify loop

Source: R. Raguram

RANSAC for line fitting

• Repeat N times:
• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the

remaining points (i.e., points whose
distance from the line is less than t)

• If there are d or more inliers, accept the
line and refit using all inliers

Choosing the parameters

• Initial number of points s
– Typically minimum number needed to fit the model

• Distance threshold t
– Choose t so probability for inlier is p (e.g. 0.95)
– Zero-mean Gaussian noise with std. dev. σ:

t2=3.84σ2

• Number of samples N
– Choose N so that, with probability p, at least one

random sample is free from outliers (e.g. p=0.99)
(outlier ratio: e)

Source: M. Pollefeys

Choosing the parameters

    sepN  11log/1log

   pe
Ns  111

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys

• Initial number of points s
• Typically minimum number needed to fit the model

• Number of samples N
• Choose N so that, with probability p, at least one random sample is

free from outliers (e.g. p=0.99) (outlier ratio: e)

Choosing the parameters

Source: M. Pollefeys

• Initial number of points s
– Typically minimum number needed to fit the model

• Distance threshold t
– Choose t so probability for inlier is p (e.g. 0.95)
– Zero-mean Gaussian noise with std. dev. σ:

t2=3.84σ2

• Number of samples N
– Choose N so that, with probability p, at least one

random sample is free from outliers (e.g. p=0.99)
(outlier ratio: e)

• Consensus set size d
– Should match expected inlier ratio

Adaptively determining the number of
samples

• Outlier ratio e is often unknown a priori, so pick
worst case, e.g. 50%, and adapt if more inliers
are found, e.g. 80% would yield e=0.2

• Adaptive procedure:
– N=∞, sample_count =0
– While N >sample_count

• Choose a sample and count the number of inliers
• If inlier ratio is highest of any found so far, set

e = 1 – (number of inliers)/(total number of points)
• Recompute N from e:

• Increment the sample_count by 1

    sepN  11log/1log

Source: M. Pollefeys

RANSAC pros and cons
• Pros

– Simple and general
– Applicable to many different problems
– Often works well in practice

• Cons
– Computational time grows quickly with fraction of

outliers and number of parameters
– Not as good for getting multiple fits (though one

solution is to remove inliers
after each fit and repeat)

– Sensitivity to threshold t

Slide Credits

• This set of sides contains contributions
kindly made available by the following authors
– Derek Hoiem
– Svetlana Lazebnik
– Kristen Grauman
– Bastian Leibe
– David Lowe
– Marc Pollefeys
– Rahul Raguram
– Steve Seitz
– Noah Snavely

