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Overview

• Keypoint matching
• Hessian detector
• Blob detection
• Feature descriptors
• Fitting
• RANSAC

– Based on slides by S. Lazebnik and D. Hoiem
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Overview of Keypoint Matching

K. Grauman, B. Leibe
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1. Find a set of   
distinctive key-
points 

3. Extract and 
normalize the    
region content  

2. Define a region 
around each 
keypoint   

4. Compute a local 
descriptor from the 
normalized region

5. Match local 
descriptors



Goals for Keypoints

Detect points that are repeatable and distinctive



Key trade-offs

More Repeatable More Points

A1

A2 A3

Detection

More Distinctive More Flexible

Description

Robust to occlusion
Works with less texture

Minimize wrong matches Robust to expected variations
Maximize correct matches

Robust detection
Precise localization



Hessian Detector [Beaudet78]

• Hessian determinant

K. Grauman, B. Leibe
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Hessian Detector [Beaudet78]

• Hessian determinant

K. Grauman, B. Leibe
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Hessian Detector – Responses [Beaudet78]

Effect: Responses mainly on 
corners and strongly textured 
areas.



Hessian Detector – Responses [Beaudet78]



So far: can localize in x-y, but not scale



Automatic Scale Selection

K. Grauman, B. Leibe
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How to find corresponding patch sizes?



Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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K. Grauman, B. Leibe
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• Function responses for increasing scale (scale signature) 

Automatic Scale Selection



K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 



Blob detection



Feature detection with scale selection
• We want to extract features with characteristic 

scale that is covariant with the image 
transformation



Blob detection: Basic idea
• To detect blobs, convolve the image with a 

“blob filter” at multiple scales and look for 
extrema of filter response in the resulting 
scale space



Blob detection: Basic idea

• Find maxima and minima of blob filter 
response in space and scale

* =

maxima

minima

Source: N. Snavely



Blob filter
• Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D
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Recall: Edge detection
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Source: S. Seitz

Edge

Derivative
of Gaussian

Edge = maximum
of derivative



Edge detection, Take 2
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Second derivative
of Gaussian 
(Laplacian)

Edge = zero crossing
of second derivative

Source: S. Seitz



From edges to blobs
• Edge = ripple
• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob

maximum



Scale selection
• We want to find the characteristic scale of the 

blob by convolving it with Laplacians at several 
scales and looking for the maximum response

• However, Laplacian response decays as scale 
increases:

increasing σoriginal signal
(radius=8)



Scale normalization
• The response of a derivative of Gaussian 

filter to a perfect step edge decreases as σ
increases

 2
1



Scale normalization

• The response of a derivative of Gaussian 
filter to a perfect step edge decreases as σ
increases

• To keep response the same (scale-
invariant), must multiply Gaussian 
derivative by σ

• Laplacian is the second Gaussian 
derivative, so it must be multiplied by σ2



Effect of scale normalization

Scale-normalized Laplacian response

Unnormalized Laplacian responseOriginal signal

maximum



Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D
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Scale selection
• At what scale does the Laplacian achieve a maximum 

response to a binary circle of radius r?
• To get maximum response, the zeros of the Laplacian 

have to be aligned with the circle
• The Laplacian is given by (up to scale):

• Therefore, the maximum response occurs at 

r

image
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Characteristic scale
• We define the characteristic scale of a blob as 

the scale that produces peak of Laplacian
response in the blob center

characteristic scale
T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116. 



Scale-space blob detector

1. Convolve image with scale-normalized 
Laplacian at several scales



Scale-space blob detector: 
Example



Scale-space blob detector: Example



Scale-space blob detector
1. Convolve image with scale-normalized 

Laplacian at several scales
2. Find maxima of squared Laplacian response in 

scale-space



Scale-space blob detector: 
Example



• Approximating the Laplacian with a difference of 
Gaussians:
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(Laplacian)

(Difference of Gaussians)

Efficient implementation



Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 



Maximally Stable Extremal Regions [Matas ‘02]

• Based on Watershed segmentation algorithm
• Select regions that stay stable over a large 

parameter range

K. Grauman, B. Leibe



Example Results: MSER

K. Grauman, B. Leibe



Local Descriptors

• The ideal descriptor should be
– Robust
– Distinctive
– Compact
– Efficient

• Most available descriptors focus on 
edge/gradient information
– Capture texture information
– Color rarely used

K. Grauman, B. Leibe



From feature detection to feature description

• Scaled and rotated versions of the same neighborhood will give 
rise to blobs that are related by the same transformation

• What to do if we want to compare the appearance of these 
image regions?

– Normalization: transform these regions into same-size circles
– Problem: rotational ambiguity



Eliminating rotation ambiguity
• To assign a unique orientation to circular 

image windows:
– Create histogram of local gradient directions in the 

patch
– Assign canonical orientation at peak of smoothed 

histogram

0 2 



SIFT features
• Detected features with characteristic 

scales and orientations:

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 



From feature detection to feature description

• Detection is covariant:
features(transform(image)) = transform(features(image))

• Description is invariant:
features(transform(image)) = features(image)



Properties of SIFT
Extraordinarily robust detection and description technique

– Can handle changes in viewpoint
• Up to about 60 degree out-of-plane rotation

– Can handle significant changes in illumination
• Sometimes even day vs. night

– Fast and efficient—can run in real time
– Lots of code available

Source: N. Snavely



Local Descriptors: SIFT Descriptor

[Lowe, ICCV 1999]

Histogram of oriented 
gradients
• Captures important texture 

information
• Robust to small translations /

affine deformations
K. Grauman, B. Leibe



Details of Lowe’s SIFT algorithm
• Run DoG detector

– Find maxima in location/scale space
– Remove edge points (bad localization)

• Find all major orientations
– Bin orientations into 36 bin histogram

• Weight by gradient magnitude
• Weight by distance to center (Gaussian-weighted mean)

– Return orientations within 0.8 of peak of histogram
• Use parabola for better orientation fit

• For each (x,y,scale,orientation), create descriptor:
– Sample 16x16 gradient mag. and rel. orientation
– Bin 4x4 samples into 4x4 histograms
– Threshold values to max of 0.2, divide by L2 norm
– Final descriptor: 4x4x8 normalized histograms

Lowe IJCV 2004

r: eigenvalue ratio



Matching SIFT Descriptors
• Nearest neighbor (Euclidean distance)
• Threshold ratio of nearest to 2nd nearest descriptor

Lowe IJCV 2004



SIFT Repeatability



SIFT Repeatability

Lowe IJCV 2004



Local Descriptors: SURF

K. Grauman, B. Leibe

• Fast approximation of SIFT idea
 Efficient computation by 2D box filters & 

integral images
 6 times faster than SIFT

 Equivalent quality for object identification

[Bay, ECCV’06], [Cornelis, CVGPU’08]



Local Descriptors: Shape Context

Count the number of points inside 
each bin, e.g.:

Count = 4

Count = 10
...

Log-polar binning: more 
precision for nearby points, 
more flexibility for farther 
points.

Belongie & Malik, ICCV 2001

K. Grauman, B. Leibe



Choosing a detector
• What do you want it for?

– Precise localization in x-y: Harris
– Good localization in scale: Difference of Gaussian
– Flexible region shape: MSER

• Best choice often application dependent
– Harris-/Hessian-Laplace/DoG work well for many natural 

categories
– MSER works well for buildings and printed things

• Why choose?
– Get more points with more detectors

• There have been extensive evaluations/comparisons
– All detectors/descriptors shown here work well



Choosing a descriptor

• Again, need not stick to one

• For object instance recognition or stitching, 
SIFT or variant is a good choice



Things to remember
• Keypoint detection: repeatable 

and distinctive
– Corners, blobs, stable regions
– Harris, DoG

• Descriptors: robust and 
selective
– spatial histograms of orientation
– SIFT



Fitting



Fitting
• We’ve learned how to 

detect edges, corners, 
blobs. Now what?

• We would like to form 
a higher-level, more 
compact 
representation of the 
features in the image 
by grouping multiple 
features according to a 
simple model



Source: K. Grauman

Fitting
• Choose a parametric model to represent 

a set of features

simple model: lines simple model: circles

complicated model: car



Fitting: Overview
• If we know which points belong to the line, 

how do we find the “optimal” line parameters?
– Least squares

• What if there are outliers?
– Robust fitting, RANSAC

• What if there are many lines?
– Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
– Model selection (not covered)



Least squares line fitting
•Data: (x1, y1), …, (xn, yn)
•Line equation: yi = m xi + b
•Find (m, b) to minimize 
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Problem with “vertical” least 
squares

• Not rotation-invariant
• Fails completely for vertical lines



Total least squares
•Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d|
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Total least squares
•Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d|
•Find (a, b, d) to minimize the sum of 
squared perpendicular distances 
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Total least squares
•Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d|
•Find (a, b, d) to minimize the sum of 
squared perpendicular distances 
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Total least squares
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Least squares: Robustness to noise



Problem: squared error heavily penalizes outliers

Least squares: Robustness to noise



RANSAC
• Random sample consensus (RANSAC): 

Very general framework for model fitting in 
the presence of outliers

• Outline
– Choose a small subset of points uniformly at 

random
– Fit a model to that subset
– Find all remaining points that are “close” to the 

model and reject the rest as outliers
– Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.



RANSAC for line fitting example

Source: R. Raguram



RANSAC for line fitting example

Least‐squares fit

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize‐and‐
verify loop

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize‐and‐
verify loop

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize‐and‐
verify loop

Uncontaminated sample

Source: R. Raguram



RANSAC for line fitting example

1. Randomly select 
minimal subset 
of points

2. Hypothesize a 
model

3. Compute error 
function

4. Select points 
consistent with 
model

5. Repeat 
hypothesize‐and‐
verify loop

Source: R. Raguram



RANSAC for line fitting

• Repeat N times:
• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the 

remaining points (i.e., points whose 
distance from the line is less than t)

• If there are d or more inliers, accept the 
line and refit using all inliers



Choosing the parameters

• Initial number of points s
– Typically minimum number needed to fit the model

• Distance threshold t
– Choose t so probability for inlier is p (e.g. 0.95) 
– Zero-mean Gaussian noise with std. dev. σ: 

t2=3.84σ2

• Number of samples N
– Choose N so that, with probability p, at least one 

random sample is free from outliers (e.g. p=0.99) 
(outlier ratio: e)

Source: M. Pollefeys



Choosing the parameters

    sepN  11log/1log

   pe
Ns  111

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys

• Initial number of points s
• Typically minimum number needed to fit the model

• Number of samples N
• Choose N so that, with probability p, at least one random sample is 

free from outliers (e.g. p=0.99) (outlier ratio: e)



Choosing the parameters

Source: M. Pollefeys

• Initial number of points s
– Typically minimum number needed to fit the model

• Distance threshold t
– Choose t so probability for inlier is p (e.g. 0.95) 
– Zero-mean Gaussian noise with std. dev. σ: 

t2=3.84σ2

• Number of samples N
– Choose N so that, with probability p, at least one 

random sample is free from outliers (e.g. p=0.99) 
(outlier ratio: e)

• Consensus set size d
– Should match expected inlier ratio



Adaptively determining the number of 
samples

• Outlier ratio e is often unknown a priori, so pick 
worst case, e.g. 50%, and adapt if more inliers 
are found, e.g. 80% would yield e=0.2 

• Adaptive procedure:
– N=∞, sample_count =0
– While N >sample_count

• Choose a sample and count the number of inliers
• If inlier ratio is highest of any found so far, set 

e = 1 – (number of inliers)/(total number of points)
• Recompute N from e:

• Increment the sample_count by 1

    sepN  11log/1log

Source: M. Pollefeys



RANSAC pros and cons
• Pros

– Simple and general
– Applicable to many different problems
– Often works well in practice

• Cons
– Computational time grows quickly with fraction of 

outliers and number of parameters 
– Not as good for getting multiple fits (though one 

solution is to remove inliers 
after each fit and repeat)

– Sensitivity to threshold t
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