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Overview

• Denoising
– Based on slides by S. Lazebnik

• Edge detection
– Based on slides by S. Lazebnik and D. Hoiem

• Feature extraction: Corners
– Based on slides by S. Lazebnik

• Sampling images
– Based on slides by D. Hoiem
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Image denoising
• How can we reduce noise in a photograph?



• Let’s replace each pixel with a weighted
average of its neighborhood

• The weights are called the filter kernel
• What are the weights for the average of a 

3x3 neighborhood?

Moving average

111

111

111

“box filter”

Source: D. Lowe



Noise
• Salt and pepper 

noise: contains 
random 
occurrences of 
black and white 
pixels

• Impulse noise: 
contains random 
occurrences of 
white pixels

• Gaussian noise: 
variations in 
intensity drawn 
from a Gaussian 
normal distribution

Original

Gaussian noise

Salt and pepper noise

Impulse noise

Source: S. Seitz



Gaussian noise
• Mathematical model: sum of many independent 

factors
• Good for small standard deviations
• Assumption: independent, zero-mean noise

Source: M. Hebert



Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing Gaussian noise



Reducing salt-and-pepper noise

• What’s wrong with the results?

3x3 5x5 7x7



Alternative idea: Median filtering
• A median filter operates over a window by 

selecting the median intensity in the window

• Is median filtering linear?
Source: K. Grauman



Median filter
• What advantage does median filtering 

have over Gaussian filtering?
– Robustness to outliers

Source: K. Grauman



Median filter
Salt-and-pepper noise Median filtered

Source: M. Hebert

• MATLAB: medfilt2(image, [h w])



Gaussian vs. median filtering
3x3 5x5 7x7

Gaussian

Median



Sharpening revisited

Source: D. Lowe



Sharpening filter

Original

111

111

111

000

020

000 -

Sharpening filter
- Accentuates differences with local 
average

Source: D. Lowe



Sharpening revisited
• What does blurring take away?

original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ α



Edge detection

Winter in Kraków photographed by Marcin Ryczek



Edge detection
• Goal:  Identify sudden 

changes (discontinuities) 
in an image
– Intuitively, most semantic 

and shape information from 
the image can be encoded 
in the edges

– More compact than pixels

• Ideal: artist’s line drawing 
(but artist is also using 
object-level knowledge)

Source: D. Lowe



Origin of edges
• Edges are caused by a variety of 

factors:

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz



Why finding edges is important

• Group pixels into 
objects or parts

• Cues for 3D shape

• Guiding interactive 
image editing



Closeup of edges



Closeup of edges



Closeup of edges



Closeup of edges



Edge detection
• An edge is a place of rapid change in the 

image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative



Derivatives with convolution
For 2D function f(x,y), the partial derivative is:

For discrete data, we can approximate using finite differences:

To implement the above as convolution, what would be 
the associated filter?
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Partial derivatives of an image

Which shows changes with respect to x?
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Finite difference filters
• Other approximations of derivative filters 

exist:

Source: K. Grauman



The gradient points in the direction of most rapid increase 
in intensity

Image gradient
• The gradient of an image: 

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?



Intensity profile
Intensity

Gradient



With a little Gaussian noise

Gradient



Effects of noise
• Consider a single row or column of the 

image

Where is the edge?
Source: S. Seitz



Effects of noise

• Difference filters respond strongly to noise
– Image noise results in pixels that look very 

different from their neighbors
– Generally, the larger the noise the stronger 

the response

• What can we do about it?

Source: D. Forsyth



Solution: smooth first

• To find edges, look for peaks in )( gf
dx
d



f

g

f * g
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Source: S. Seitz



• Differentiation is convolution, and convolution is 
associative:

• This saves us one operation

g
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Derivative of Gaussian filters

• Which one finds horizontal/vertical edges?



Derivative of Gaussian filters

• Are these filters separable?



Recall: Separability of the Gaussian 
filter

Source: D. Lowe



• Smoothed derivative removes noise, but 
blurs edge. Also finds edges at different 
“scales”

1 pixel 3 pixels 7 pixels

Scale of Gaussian derivative filter

Source: D. Forsyth



Review: Smoothing vs. derivative filters
• Smoothing filters

– Gaussian: remove “high-frequency” components; 
“low-pass” filter

– Can the values of a smoothing filter be negative?

– What should the values sum to?
• One: constant regions are not affected by the filter

• Derivative filters
– Derivatives of Gaussian
– Can the values of a derivative filter be negative?
– What should the values sum to?

• Zero: no response in constant regions
• High absolute value at points of high contrast



The Canny edge detector
1. Filter image with derivative of Gaussian 
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

– Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):

– Define two thresholds: low and high
– Use the high threshold to start edge curves and 

the low threshold to continue them



The Canny edge detector

original image
Slide credit: Steve Seitz



The Canny edge detector

norm of the gradient



The Canny edge detector

thresholding



The Canny edge detector

thresholding

How to turn 
these thick 
regions of the 
gradient into 
curves?



Non-maximum suppression

Check if pixel is local maximum along gradient direction, 
select single max across width of the edge
– requires checking interpolated pixels p and r

Source: D. Forsyth



Bilinear Interpolation



The Canny edge detector

Thinning (non-maximum suppression)
Problem: pixels along this edge didn’t survive the thresholding



Hysteresis thresholding

• Use a high threshold to start edge curves, 
and a low threshold to continue them

Source: Steve Seitz



Hysteresis thresholding
• Threshold at low/high levels to get weak/strong edge pixels
• Trace connected components, starting from strong edge 

pixels



Recap: Canny edge detector
1. Compute x and y gradient images 
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

– Thin wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):

– Define two thresholds: low and high
– Use the high threshold to start edge curves and 

the low threshold to continue them

• MATLAB:   edge(image, ‘canny’);

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 8:679-714, 1986. 



Effect of  (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of  depends on desired behavior
• large  detects large scale edges
• small  detects fine features

Source: S. Seitz



Learning to detect boundaries

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude



pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detect 
Natural Image Boundaries…
http://www.eecs.berkeley.edu/Research/Projects/CS/visi
on/grouping/papers/mfm-pami-boundary.pdf



pB Boundary Detector

Figure from Fowlkes



Brightness

Color

Texture

Combined

Human



Results

Human (0.95)

Pb (0.88)



Results

Human

Pb

Human (0.96)

Global PbPb (0.88)



Human (0.95)

Pb (0.63)



Human (0.90)

Pb (0.35)

For more: 
http://www.eecs.berkeley.edu/Research/Projects/CS/v
ision/bsds/bench/html/108082-color.html



Feature extraction: Corners



Why extract features?

• Motivation: panorama stitching
– We have two images – how do we combine 

them?



Step 1: extract features

Step 2: match features

Why extract features?

• Motivation: panorama stitching
– We have two images – how do we combine 

them?



Step 1: extract features

Step 2: match features

Step 3: align images

• Motivation: panorama stitching
– We have two images – how do we combine 

them?

Why extract features?



Characteristics of good features

• Repeatability
– The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
– Each feature is distinctive

• Compactness and efficiency
– Many fewer features than image pixels

• Locality
– A feature occupies a relatively small area of the image; robust to 

clutter and occlusion



Applications  
• Feature points are used for:

– Image alignment 
– 3D reconstruction
– Motion tracking
– Robot navigation
– Indexing and database retrieval
– Object recognition



A hard feature matching problem

NASA Mars Rover images



NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Answer below (look for tiny colored squares…)



Corner Detection: Basic Idea
• We should easily recognize the point by 

looking through a small window
• Shifting a window in any direction should 

give a large change in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions



Corner Detection: Mathematics
Change in appearance of window W for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)
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Corner Detection: Mathematics

I(x, y)
E(u, v)

E(0,0)
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Change in appearance of window W for the shift [u,v]:



Corner Detection: Mathematics

We want to find out how this function behaves for small shifts

E(u, v)
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Change in appearance of window W for the shift [u,v]:



Corner Detection: Mathematics

• First-order Taylor approximation for small 
motions [u, v]:

• Let’s plug this into E(u,v):
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Corner Detection: Mathematics
The quadratic approximation can be written as

where M is a second moment matrix computed from image 
derivatives:
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(the sums are over all the pixels in the window W)



• The surface E(u,v) is locally approximated by a quadratic 
form. Let’s try to understand its shape.

• Specifically, in which directions 
does it have the smallest/greatest
change?

Interpreting the second moment matrix
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First, consider the axis-aligned case (gradients are 
either horizontal or vertical)

If either a or b is close to 0, then this is not a corner, so look for 
locations where both are large.
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Interpreting the second moment matrix



Consider a horizontal “slice” of E(u, v):

This is the equation of an ellipse.
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Interpreting the second moment matrix



Consider a horizontal “slice” of E(u, v):

This is the equation of an ellipse.
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0
0




The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R

direction of the 
slowest change

direction of the 
fastest change

(max)-1/2

(min)-1/2
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Diagonalization of M:

Interpreting the second moment matrix



Quick Eigenvalue/Eigenvector 
Review

The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar  is the eigenvalue corresponding to x
– The eigenvalues are found by solving:

– In our case, A = H is a 2x2 matrix, so we have

– The solution:

Once you know , you find x by solving



Visualization of second moment 
matrices



Visualization of second moment 
matrices



Interpreting the eigenvalues

1

2

“Corner”
1 and 2 are large,
1 ≈ 2;
E increases in all 
directions

1 and 2 are small;
E is almost constant 
in all directions

“Edge” 
1 >> 2

“Edge” 
2 >> 1

“Flat” 
region

Classification of image points using eigenvalues of M:



Corner response function

“Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

2
2121

2 )()(trace)det(   MMR

α: constant (0.04 to 0.06)



The Harris corner detector
1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a 

Gaussian window around each pixel: 

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.
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1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a 

Gaussian window around each pixel 
3. Compute corner response function R

The Harris corner detector



Harris Detector: Steps



Harris Detector: Steps
Compute corner response R



The Harris corner detector
1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a 

Gaussian window around each pixel 
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function 

(non-maximum suppression)



Harris Detector: Steps
Find points with large corner response: R > threshold



Harris Detector: Steps
Take only the points of local maxima of R



Harris Detector: Steps



Invariance and covariance
• We want corner locations to be invariant to photometric 

transformations and covariant to geometric transformations
– Invariance: image is transformed and corner locations do not change
– Covariance: if we have two transformed versions of the same image, 

features should be detected in corresponding locations



Intensity changes

• Only derivatives are used => invariance 
to intensity shift I  I + b

•  Intensity scaling: I  a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I  a I + b



Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation



Image rotation

Second moment ellipse rotates but its shape (i.e. 
eigenvalues) remains the same

Corner location is covariant w.r.t. rotation



Scaling

All points will be 
classified as edges

Corner

Corner location is not covariant to scaling!



Why does a lower resolution image still 
make sense to us?  What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ 

Sampling



Throw away every other row and column 
to create a 1/2 size image

Subsampling by a factor of 2



• 1D example (sinewave):

Source: S. Marschner

Aliasing problem



Source: S. Marschner

• 1D example (sinewave):

Aliasing problem



• Sub-sampling may be dangerous….
• Characteristic errors may appear: 

– “Wagon wheels rolling the wrong way in 
movies”

– “Checkerboards disintegrate in ray tracing”
– “Striped shirts look funny on color 

television”

Source: D. Forsyth

Aliasing problem



Aliasing in video

Slide by Steve Seitz



Source: A. Efros

Aliasing in graphics



Sampling and aliasing



• When sampling a signal at discrete intervals, 
the sampling frequency must be  2  fmax

• fmax = max frequency of the input signal
• This will allows to reconstruct the original 

perfectly from the sampled version

good

bad

v v v

Nyquist-Shannon Sampling Theorem



Anti-aliasing

Solutions:
• Sample more often

• Get rid of all frequencies that are greater 
than half the new sampling frequency
– Will lose information
– But it’s better than aliasing
– Apply a smoothing filter



Algorithm for downsampling by 
factor of 2

1. Start with image(h, w)
2. Apply low‐pass filter

im_blur = imfilter(image, fspecial(‘gaussian’, 7, 1))

3. Sample every other pixel
im_small = im_blur(1:2:end, 1:2:end);



Anti-aliasing

Forsyth and Ponce 2002



Subsampling without pre-filtering

1/4  (2x zoom) 1/8  (4x zoom)1/2

Slide by Steve Seitz



Subsampling with Gaussian pre-filtering

G 1/4 G 1/8Gaussian 1/2

Slide by Steve Seitz
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