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Overview

• Brief summary of optics and aperture
• Camera body: shutter
• The sensor 

– Based on slides by G. Doretto

• Light and Shading
• Linear filters

– Based on slides by D. Hoiem
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Camera Body: Optics



Pinhole camera

• Add a barrier to block off most of the rays
– This reduces blurring
– The opening known as the aperture
– How does this transform the image?



Thin lens formula
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Changing the focal length
vs. changing the viewpoint

• Telephoto makes it easier to 
select background (a small 
change in viewpoint is a big 
change in background.
– changing the focal

length lets us move
back from a subject,
while maintaining its
size on the image

– but moving back
changes perspective
relationships



Camera Body: Aperture



Aperture
• Diameter of the lens opening (controlled by diaphragm)
• Expressed as a fraction of focal length, in f-number N

– f/2.0 on a 50mm lens means that the aperture is 25mm
– f/2.0 on a 100mm lens means that the aperture is 

50mm
• Disconcerting: small f-number = big aperture
• What happens to the area of the aperture when going from 

f/2.0 to f/4.0?
• Typical f-numbers are (each of them counts as one f/stop) 

f/2.0, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22, f/32
– See the pattern?



Depth of field

lenssensor

Point in focus

Object with texture

• We allow for some tolerance

lenssensor

Point in focus

Object with texture
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confusion
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Depth 
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Camera Body: Shutter



Shutter speed

• Controls how long the film/sensor is 
exposed

• Pretty much linear effect on exposure
• Usually in fraction of a second: 

– 1/30, 1/60, 1/125, 1/250, 1/500
– Get the pattern ?

• On a normal lens, normal humans can 
hand-hold down to 1/60



Main effect of shutter speed

• Motion blur
• Halving shutter speed doubles motion blur

From Photography, London et al. 



Effect of shutter speed

• Freezing motion

1/125 1/250 1/500 1/1000

Walking people Running people Car Fast train



Exposure
• Two main parameters: 

– Aperture (in f number)
– Shutter speed (in fraction of a 

second)

• Exposure = irradiance x time
H = ExT

• Irradiance (E)
– controlled by aperture

• Exposure time (T)
– controlled by shutter



Reciprocity
• Reciprocity

The same exposure is obtained with 
an exposure twice as long and an 
aperture area half as big

– Hence square root of two 
progression of f stops vs. power of 
two progression of shutter speed

From Photography, London et al. 



Reciprocity
• Assume we know how much light we need 
• We have the choice of an infinity of shutter 

speed/aperture pairs

• What will guide our choice of a shutter speed?
– Freeze motion vs. motion blur, camera shake

• What will guide our choice of an aperture?
– Depth of field, distortion reduction, diffraction limit

• Often we must compromise
– Open more to enable faster speed (but shallow DoF)



From Photography, London et al. 



From Photography, London et al. 



From Photography, London et al. 



Metering
• Photosensitive sensors measure scene luminance
• Usually TTL (through the lens)
• Simple version: center-weighted average

• Assumption? Failure cases?
– Usually assumes that a scene is 18% gray
– Problem with dark and bright scenes



From Photography, London et al. 



Exposure & Metering
• The camera metering system measures how bright the 

scene is
• In Aperture priority mode, the photographer sets the 

aperture, the camera sets the shutter speed
• In Shutter-speed priority mode, the photographers sets the 

shutter speed and the camera deduces the aperture
– In both cases, reciprocity is exploited

• In Program mode, the camera decides both exposure and 
shutter speed (middle value more or less)

• In Manual, the user decides everything (but can get 
feedback)



Pros and cons of various modes

• Aperture priority
– Direct depth of field control
– Cons: can require impossible shutter speed (e.g. with f/1.4 

for a bright scene)
• Shutter speed priority

– Direct motion blur control
– Cons: can require impossible aperture (e.g. when requesting 

a 1/1000 speed for a dark scene)
• Note that aperture is somewhat more restricted

• Program
– Almost no control, but no need for neurons

• Manual
– Full control, but takes more time and thinking



Recap
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Focal length

<30mm: wide angle
50mm: standard
>100mm telephoto
Affected by sensor 

size (crop factor)

24mm

50mm

135mm
focal length

field 
of 

view



Exposure
• Aperture (f number)

– Expressed as ratio between focal length and aperture diameter: 
diameter = f / <f number>

– f/2.0, f/2.8, f/4.0, f/5.6, f/8.0, f/11, f/16   (factor of sqrt (2))
– Small f number means large aperture
– Main effect: depth of field
– A good standard lens has max aperture f/1.8. 

A cheap zoom has max aperture f/3.5
• Shutter speed

– In fraction of a second
– 1/30, 1/60, 1/125, 1/250, 1/500 (factor of 2)
– Main effect: motion blur

• Sensitivity
– Gain applied to sensor
– In ISO, bigger number, more sensitive (100, 200, 400, 800, 1600)
– Main effect: sensor noise

Reciprocity between these three numbers: 
for a given exposure, one has two degrees of freedom. 



Sensor Chip



Image Formation



Digital camera

A digital camera replaces film with a sensor 
array

• Each cell in the array is light-sensitive diode that converts photons to 
electrons

• Two common types: Charge Coupled Device (CCD) and 
Complementary Metal Oxide Semiconductor (CMOS)



Sensor Array

CMOS sensor



The raster image (pixel matrix)
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The raster image (pixel matrix)



Interlace vs. progressive scan

http://www.axis.com/products/video/camera/progressive_scan.htm



Progressive scan

http://www.axis.com/products/video/camera/progressive_scan.htm



Interlace

http://www.axis.com/products/video/camera/progressive_scan.htm
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Images in Matlab
• Images represented as a matrix
• Suppose we have a NxM RGB image called “im”

– im(1,1,1) = top-left pixel value in R-channel
– im(y, x, b) = y pixels down, x pixels to right in the bth channel
– im(N, M, 3) = bottom-right pixel in B-channel

• imread(filename) returns a uint8 image (values 0 to 255)
– Convert to double format (values 0 to 1) with im2double
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CCD color sampling

• Problem: a photosite can record only one 
number

• We need 3 numbers for color



Some approaches to color sensing

• Scan 3 times (temporal multiplexing)
– Drum scanners
– Flat-bed scanners
– Russian photographs from 1800’s

• Use 3 detectors 
– High-end 3-tube or 3-ccd video cameras

• Use spatially offset color samples (spatial 
multiplexing)
– Single-chip CCD color cameras
– Human eye 



3 CCD Sensor
• 3-chip vs. 1-chip: quality vs. cost



Spatial Multiplexing: Bayer Grid

• Why more green?
– We have 3 channels and square lattice doesn’t like 

odd numbers
– It’s the spectrum “in the middle” 
– More important to human perception of brightness



Practical Color Sensing: Bayer Grid



Recap: Camera sensor

http://www.photoaxe.com/wp-content/uploads/2007/04/camera-sensor.jpg



Sensor Chip: Gain



Sensitivity (ISO)
• Third variable for exposure: gain applied to sensor
• Linear effect (200 ISO needs half the light as 100 ISO)
• Film photography: trade sensitivity for grain

• Digital photography: trade sensitivity for noise
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Light and Shading

Slides by D. Hoiem
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• What determines a pixel’s intensity?
• What can we infer about the scene from 

pixel intensities?



How does a pixel get its value?

Light emitted

Sensor

Lens

Fraction of light 
reflects into camera



How does a pixel get its value?
• Major factors

– Illumination strength 
and direction

– Surface geometry
– Surface material 
– Nearby surfaces
– Camera 

gain/exposure

Light emitted

Sensor

Light reflected to camera



Basic models of reflection
• Specular: light bounces off at the 

incident angle
– E.g., mirror

• Diffuse: light scatters in all 
directions
– E.g., brick, cloth, rough wood

incoming lightspecular reflection

ΘΘ

incoming lightdiffuse reflection



Lambertian reflectance model
• Some light is absorbed (function of albedo )
• Remaining light is scattered (diffuse reflection)
• Examples: soft cloth, concrete, matte paints

light sourcelight source

absorption

diffuse reflection

ሺ1 െ ሻߩ

ߩ



Diffuse reflection: Lambert’s cosine law

Intensity does not depend on viewer angle.
– Amount of reflected light proportional to cos	ሺߠሻ
– Visible solid angle also proportional to cos	ሺߠሻ



Most surfaces have both specular and 
diffuse components

• Specularity = spot where specular reflection 
dominates (typically reflects light source)

Photo: northcountryhardwoodfloors.com

Typically, specular component is 
small



Intensity and Surface Orientation

Intensity depends on illumination angle 
because less light comes in at oblique 
angles.

ߩ ൌ	albedo
ࡿ ൌ directional source
ࡺ ൌ surface normal
I ൌ reflected intensity

Slide: Forsyth
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Recap
• When light hits a typical 

surface
– Some light is absorbed (1- )

• More absorbed for low albedos

– Some light is reflected diffusely
• Independent of viewing direction

– Some light is reflected specularly
• Light bounces off (like a mirror), 

depends on viewing direction

specular 
reflection

ΘΘ

diffuse 
reflection

absorption



Other possible effects

light sourcetransparency light source

refraction



λ1

light source

λ2

fluorescence

t=1

light source

t>1

phosphorescence



λ

light source

subsurface 
scattering



BRDF: Bidirectional Reflectance Distribution 
Function
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Slide credit: S. Savarese

• Model of local reflection that tells how bright a surface appears when viewed 
from one direction when light falls on it from another
– Ratio of measured outgoing radiance in direction (θe,φe) to irradiance from direction 

(θi,φi)
– Reciprocal 



Color

http://www.yorku.ca/eye/photopik.htm

Human Luminance Sensitivity Function

Slide Credit: Efros

Light is composed of a spectrum of wavelengths



Some examples of the reflectance spectra of surfaces

Wavelength (nm)
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Red

400          700

Yellow

400          700

Blue

400          700

Purple

400          700

© Stephen E. Palmer, 2002



The color of objects
• Colored light arriving at the camera involves two effects

– The color of the light source (illumination + inter-reflections)
– The color of the surface

Slide: Forsyth



Why RGB?

If light is a spectrum, why are images RGB?



Human color receptors

• Long (red), Medium (green), and Short (blue) cones, 
plus intensity rods

• Fun facts
– “M” and “L” on the X-chromosome

• That’s why men are more likely to be color blind

– “L” has high variation, so some women are tetrachromatic
– Some animals have 1 (night animals), 2 (e.g., dogs), 4 

(fish, birds), 5 (pigeons, some reptiles/amphibians), or 
even 12 (mantis shrimp) types of cones

http://en.wikipedia.org/wiki/Color_vision



Color spaces: RGB

0,1,0

0,0,1

1,0,0

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png

Some drawbacks
• Strongly correlated channels
• Non-perceptual 

Default color space

R
(G=0,B=0)

G
(R=0,B=0)

B
(R=0,G=0)



Color spaces: HSV
Intuitive color space

H
(S=1,V=1)

S
(H=1,V=1)

V
(H=1,S=0)



Color spaces: YCbCr

Y
(Cb=0.5,Cr=0.5)

Cb
(Y=0.5,Cr=0.5)

Cr
(Y=0.5,Cb=05)

Y=0 Y=0.5

Y=1Cb

Cr

Fast to compute, good for 
compression, used by TV



Color spaces: CIE L*a*b*
“Perceptually uniform” color space

L
(a=0,b=0)

a
(L=65,b=0)

b
(L=65,a=0)

Luminance = brightness
Chrominance = color



Which contains more information?
(a) intensity (1 channel) 

(b) chrominance (2 channels)



Most information in intensity

Only color shown – constant intensity



Most information in intensity

Only intensity shown – constant color



Most information in intensity

Original image



So far: lightsurfacecamera
• Called a local illumination model
• But much light comes from surrounding surfaces

From Koenderink slides on image texture and the flow of light



Inter-reflection is a major source of light



Inter-reflection affects the apparent color of objects



Scene surfaces also cause 
shadows

• Shadow: reduction in intensity due to a 
blocked source



Shadows



Models of light sources
• Distant point source

– One illumination direction
– E.g., sun

• Area source
– E.g., white walls, diffuser lamps, sky

• Ambient light
– Substitute for dealing with interreflections

• Global illumination model
– Account for interreflections in modeled scene 



The plight of the poor pixel

• A pixel’s brightness is determined by
– Light source (strength, direction, color)
– Surface orientation
– Surface material and albedo
– Reflected light and shadows from surrounding 

surfaces
– Gain on the sensor

• A pixel’s brightness tells us nothing by itself





And yet we can interpret images…

• Key idea: for nearby scene points, most 
factors do not change much

• The information is mainly contained in 
local differences of brightness



Darkness = Large Difference in Neighboring 
Pixels



What is this?





What differences in intensity tell us 
about shape

• Changes in surface normal
• Texture
• Proximity
• Indents and bumps
• Grooves and creases

Photos Koenderink slides on image texture and the flow of light



Color constancy
• Interpret surface in terms of albedo or “true color”, rather 

than observed intensity
– Humans are good at it
– Computers are not nearly as good



One source of constancy: local comparisons



http://www.echalk.co.uk/amusements/OpticalIllusions/colourPerception/colourPerception.html



Things to remember
• Important terms: diffuse/specular 

reflectance, albedo, umbra/penumbra

• Observed intensity depends on light 
sources, geometry/material of 
reflecting surface, surrounding 
objects, camera settings

• Objects cast light and shadows on 
each other

• Differences in intensity are primary 
cues for shape 



Pixels and Linear Filters

Slides by D. Hoiem
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The raster image (pixel matrix)
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Image filtering

• Image filtering: for each pixel, compute 
function of local neighborhood and output 
a new value
– Same function applied at each position
– Output and input image are typically the same 

size



Image filtering
• Linear filtering: function is a weighted 

sum/difference of pixel values

• Really important
– Enhance images

• Denoise, smooth, increase contrast, etc.

– Extract information from images
• Texture, edges, distinctive points, etc.

– Detect patterns
• Template matching
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Slide credit: David Lowe (UBC)
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Example: box filter
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What does it do?
• Replaces each pixel with an 

average of its neighborhood

• Achieve smoothing effect 
(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Box Filter



Smoothing with box filter



Practice with linear filters
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Original

?

Source: D. Lowe



Practice with linear filters
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Original Filtered 
(no change)

Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters
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(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters

Original
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Sharpening filter
- Accentuates differences with local average

Source: D. Lowe



Sharpening

Source: D. Lowe



Other filters
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Other filters
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Basic gradient filters
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Examples
Write as filtering operations, plus some 
pointwise operations: +, -, .*,>

1. Sum of four adjacent neighbors plus 1

2. Sum of squared values of 3x3 windows around 
each pixel:

3. Center pixel value is larger than the average of the 
pixel values to the left and right:
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Filtering vs. Convolution
• 2d filtering

– h=filter2(g,f); or

h=imfilter(f,g);

• 2d convolution
– h=conv2(g,f);
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f=imageg=filter
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Key properties of linear filters

Linearity:
filter(f1 + f2) = filter(f1) + filter(f2)

Shift invariance: same behavior regardless 
of pixel location
filter(shift(f)) = shift(filter(f))

Any linear, shift-invariant operator can be 
represented as a convolution

Source: S. Lazebnik



More properties
• Commutative: a * b = b * a

– Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
– Often apply several filters one after another: (((a * b1) * b2) * b3)
– This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0], a * e = a

Source: S. Lazebnik



• Spatially-weighted average

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian



Smoothing with Gaussian filter



Smoothing with box filter



Gaussian filters

• Remove “high-frequency” components from the 
image (low-pass filter)
– Images become more smooth

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, repeat, and 

get same result as larger-width kernel would have
– Convolving two times with Gaussian kernel of width σ

is same as convolving once with kernel of width  2√ߪ
• Separable kernel

– Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Separability example

*

*

=

=

Source: K. Grauman

2D filtering
(center location only)

The filter factors
into a product of 1D

filters:

Perform filtering
along rows:

Followed by filtering
along the remaining column:



Separability

• Why is separability useful in practice?



How big should the filter be?
• Values at edges should be near zero  important!
• Rule of thumb for Gaussian: set filter half-width to 

about 3 σ

Practical matters



Practical matters

• What about near the edge?
– the filter window falls off the edge of the 

image
– need to extrapolate
– methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge

Source: S. Marschner



Practical matters

– methods (MATLAB):
• clip filter (black): imfilter(f, g, 0)
• wrap around: imfilter(f, g, ‘circular’)
• copy edge: imfilter(f, g, ‘replicate’)
• reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner



Practical matters
• What is the size of the output?
• MATLAB: filter2(g, f, shape)

– shape = ‘full’: output size is sum of sizes of f and g
– shape = ‘same’: output size is same as f
– shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik
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