CS 558: Computer Vision 14th Set of Notes

Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215

Overview

- Action and activity recognition
- Background subtraction
- Tracking
- Tracking people

 Based on slides by K. Grauman and D. Hoiem

Action and activity in video

No universal terminology, but approximately:

- "Actions": atomic motion patterns -- often gesture-like, single clear-cut trajectory, single nameable behavior (e.g., sit, wave arms)
- "Activity": series or composition of actions (e.g., interactions between people)
- "Event": combination of activities or actions (e.g., a football game, a traffic accident)

Reminder: Optical Flow

• Definition: optical flow is the *apparent* motion of brightness patterns in the image



Using optical flow: recognizing facial expressions

Disgust

happiness

Anger

Sadness

fear

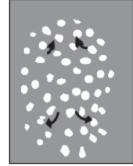
Surprise

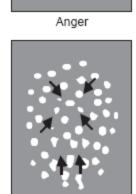
Recognizing Human Facial Expression (1994) by Yaser Yacoob, Larry S. Davis

Happiness

Sadness

Surprise

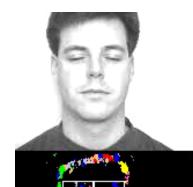




Fear

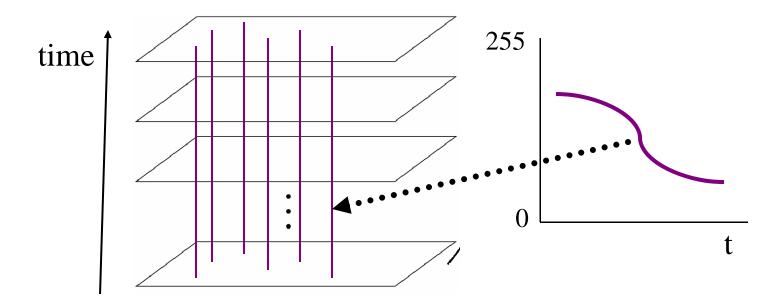
Disaust

Using optical flow: recognizing facial expressions



OPENING LEYE

Video as an "Image Stack"



- Can look at video data as a spatio-temporal volume
 - If camera is stationary, each line through time corresponds to a single ray in space

Background Subtraction

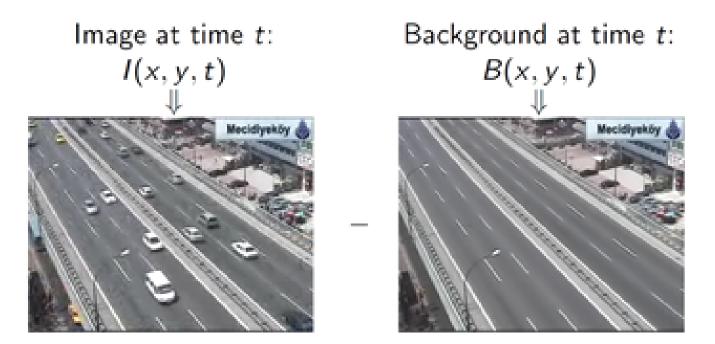
Given an image (a video frame), we want to identify the foreground objects

- In most cases, objects are of interest, not the static part of the scene
- Makes our life easier: lower processing costs and less room for error

Background subtraction

- Simple techniques can do ok with static camera
- ...But hard to do perfectly
- Widely used:
 - Traffic monitoring (counting vehicles, detecting & tracking vehicles, pedestrians),
 - Human action recognition (run, walk, jump, squat),
 - Human-computer interaction
 - Object tracking

Simple Approach



> Th

- 1. Estimate the background for time t
- 2. Subtract the estimated background from the input image
- 3. Apply a threshold *Th* to the absolute difference to get the foreground mask

Frame Differencing

 Background is estimated to be the previous frame. Background subtraction equation becomes:

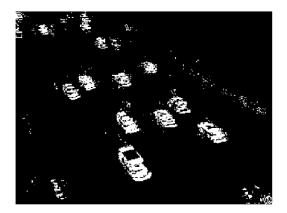
B(x,y,t) = I(x,y,t-1)|I(x,y,t)=I(x,y,t-1)| > Th

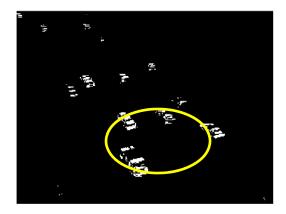
 Depending on the object structure, speed, frame rate and global threshold, this approach may or may not be useful (usually not)

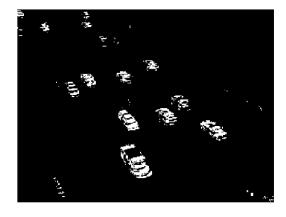
| > Th

Frame Differencing

Th = 25







Th = 200

Mean Filter

• The background is the mean of the previous n frames

$$B(x, y, t) = \frac{1}{n} \sum_{i=0}^{n-1} I(x, y, t-i)$$

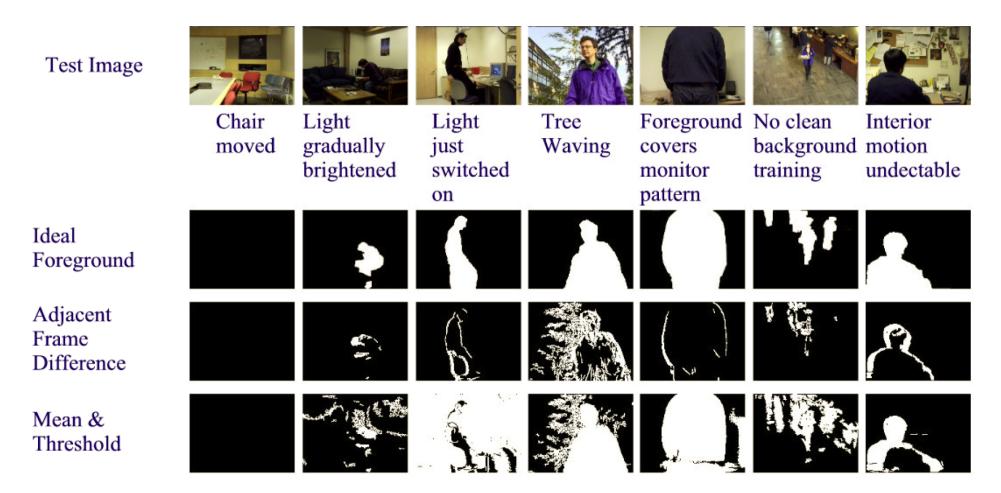
$$|I(x, y, t) - \frac{1}{n} \sum_{i=0}^{n-1} I(x, y, t-i)| > Th$$

• For n=10

Estimated Background

Foreground Mask

Frame differences vs. background subtraction



• Toyama et al. 1999

Median Filter

 Assuming that the background is more likely to appear in a scene, we can use the median of the previous n frames as the background model:

• For n=10

Estimated Background

Foreground Mask

Average/Median Image

Alyosha Efros

Background Subtraction

Alyosha Efros

Pros and cons

Advantages:

- Extremely easy to implement and use!
- All pretty fast.
- Corresponding background models need not be constant, they change over time.

Disadvantages:

- Accuracy of frame differencing depends on object speed and frame rate
- Median background model: relatively high memory requirements.
- Setting global threshold Th...

When will this basic approach fail?

Background mixture models

0.04

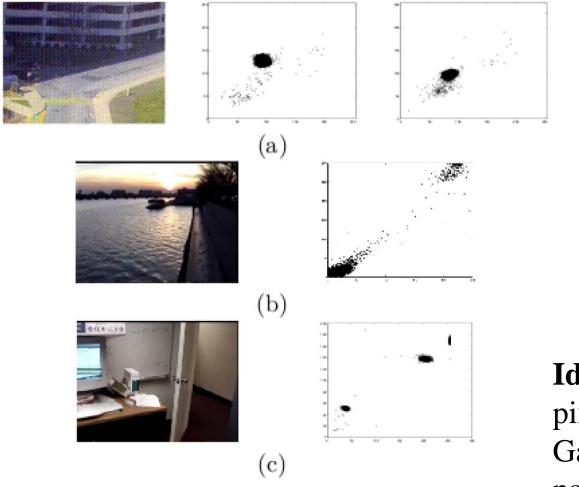
0.03

0.025

0.02

0.015

0.01



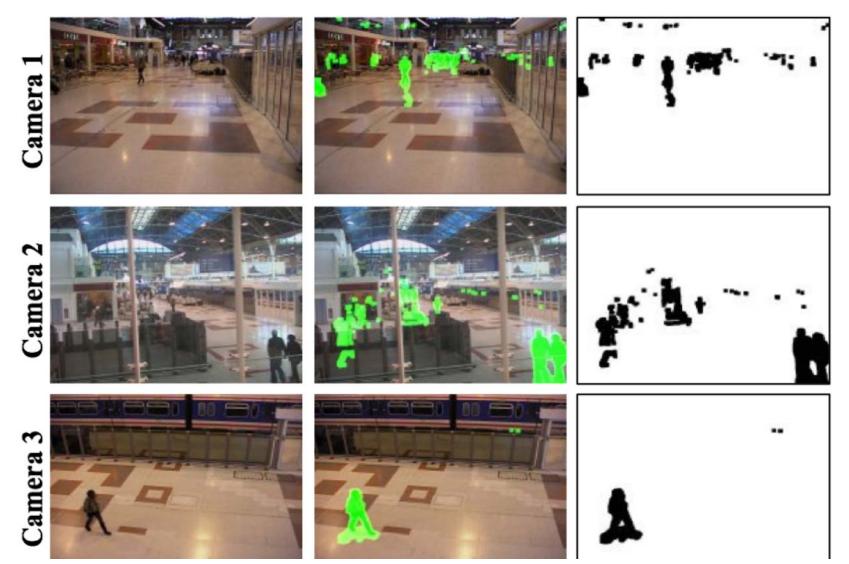
Idea: model each background pixel with a *mixture* of Gaussians; update its parameters over time.

Adaptive Background Mixture Models for Real-Time Tracking, Chris Stauer & W.E.L. Grimson

Background subtraction with depth

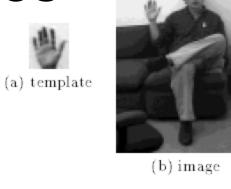
How can we select foreground pixels based on depth information?

Surveillance



http://users.isr.ist.utl.pt/~etienne/mypubs/Auvinetal06PETS.pdf

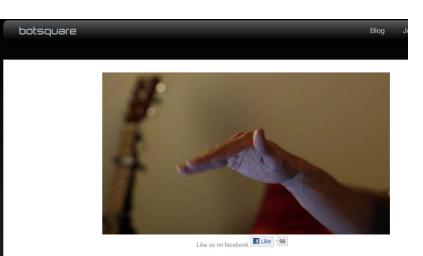
Interfaces



(c) normalized correlation

1995

W. T. Freeman and C. Weissman, Television control by hand gestures, International Workshop on Automatic Face- and Gesture- Recognition, IEEE Computer Society, Zurich, Switzerland, June, 1995, pp. 179--183. MERL-TR94-24



We will soon launch our beta product. Stay tuned and be the first to control YouTube, Hulu, Vevo or Netflix through a flick of fingers.

.

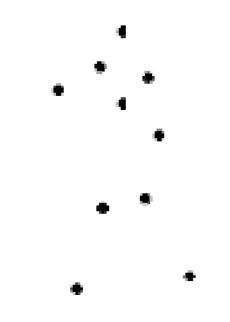
2011

Human activity in video: basic approaches

- Model-based action/activity recognition:
 - Use human body tracking and pose estimation techniques, relate to action descriptions (or learn)
 - Major challenge: accurate tracks in spite of occlusion, ambiguity, low resolution
- Activity as motion, space-time appearance patterns
 - Describe overall patterns, but no explicit body tracking
 - Typically learn a classifier

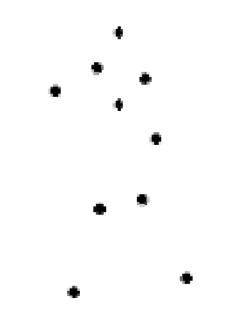
Motion and perceptual organization

 Even "impoverished" motion data can evoke a strong percept

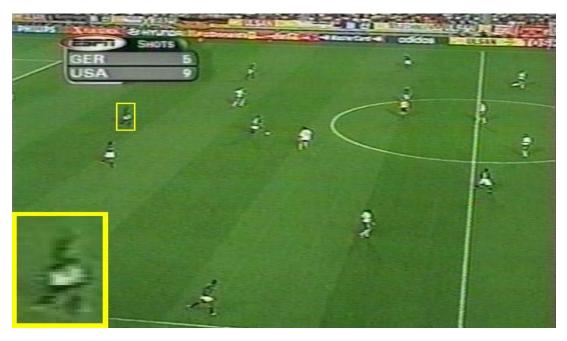


Motion and perceptual organization

 Even "impoverished" motion data can evoke a strong percept

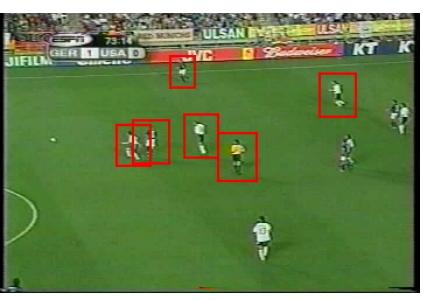


- Features = optical flow within a region of interest
- Classifier = nearest neighbors

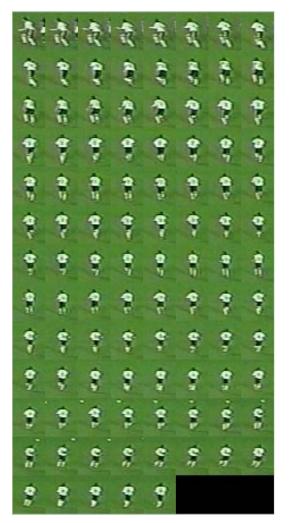


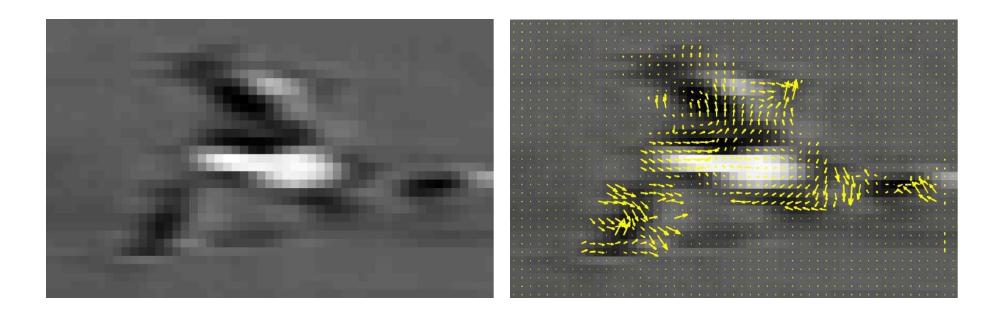
Challenge: low-res data, not going to be able to track each limb.

The 30-Pixel Man



Correlation-based tracking Extract person-centered frame window





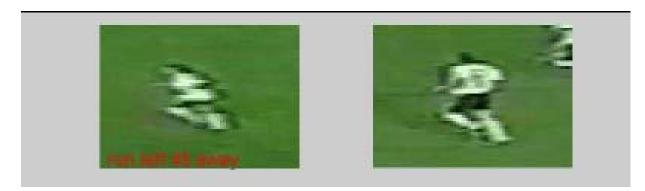
Extract optical flow to describe the region's motion.

[Efros, Berg, Mori, & Malik 2003] http://graphics.cs.cmu.edu/people/efros/research/action/

Input

Matched Frames

Use **nearest neighbor** classifier to name the actions occurring in new video frames.



Input Sequence Matched NN Frame

Use **nearest neighbor** classifier to name the actions occurring in new video frames.

[Efros, Berg, Mori, & Malik 2003] http://graphics.cs.cmu.edu/people/efros/research/action/

Do as I do: motion retargeting

[Efros, Berg, Mori, & Malik 2003] http://graphics.cs.cmu.edu/people/efros/research/action/

Motion Energy Images

$$E_{\tau}(x, y, t) = \bigcup_{i=0}^{\tau-1} D(x, y, t-i)$$

D(x,y,t): Binary image sequence indicating motion locations

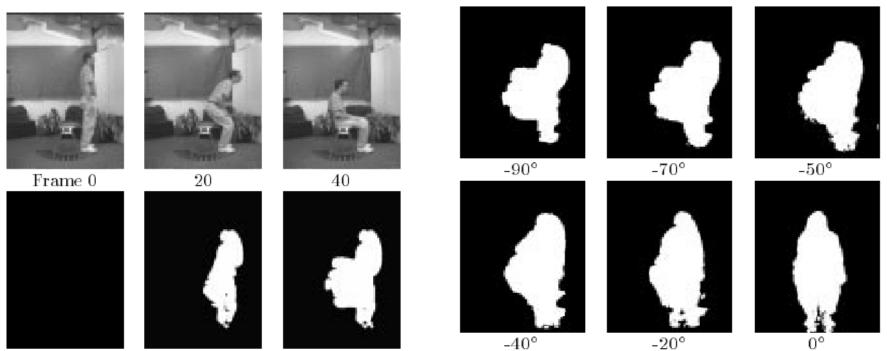
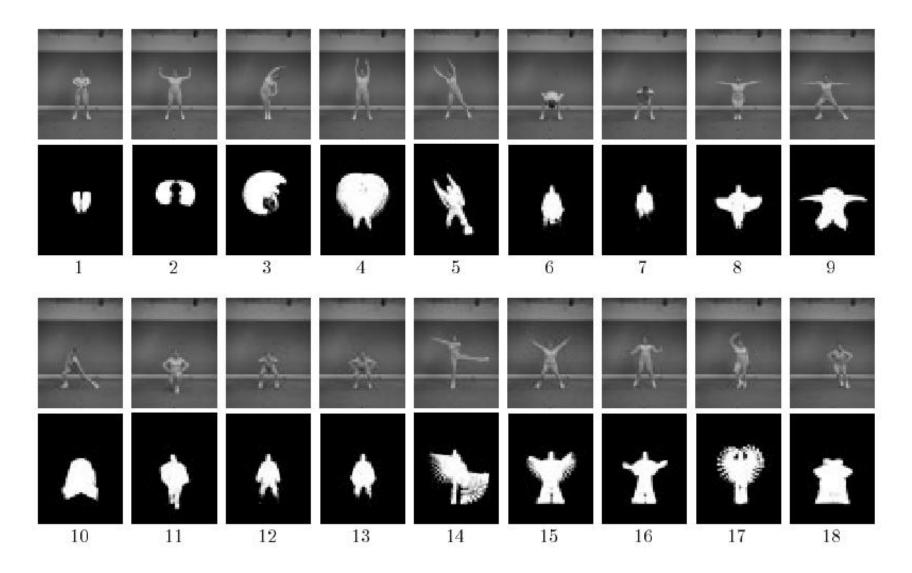


Figure 2: Example of someone sitting. Top row contains key frames; bottom row is cumulative motion images starting from Frame 0.

Figure 3: MEIs of sitting action over 90° viewing angle. The smooth change implies only a coarse sampling of viewing direction is necessary to recognize the action from all angles.

Davis & Bobick 1999: The Representation and Recognition of Action Using Temporal Templates

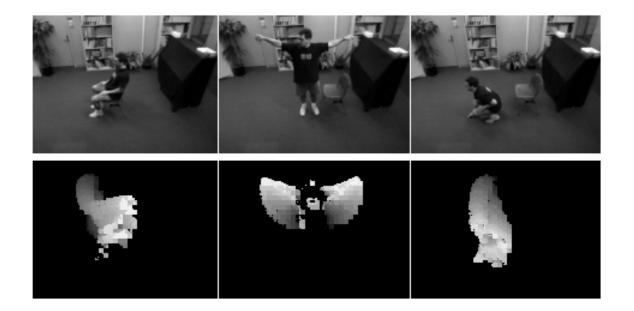
Motion Energy Images



Davis & Bobick 1999: The Representation and Recognition of Action Using Temporal Templates

Motion History Images

$$H_{\tau}(x, y, t) = \begin{cases} \tau & \text{if } D(x, y, t) = 1\\ \max(0, H_{\tau}(x, y, t - 1) - 1) & \text{otherwise} \end{cases}$$



Davis & Bobick 1999: The Representation and Recognition of Action Using Temporal Templates

Image moments

Use to summarize shape given image *I(x,y)*

$$M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y)$$

Central moments are translation invariant:

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^{p} (y - \bar{y})^{q} I(x, y)$$
$$\bar{x} = \frac{M_{10}}{M_{00}} \qquad \bar{y} = \frac{M_{01}}{M_{00}}$$

Hu moments

- Set of 7 moments
- Apply to Motion History Image for global space-time "shape" descriptor
- Translation and rotation invariant

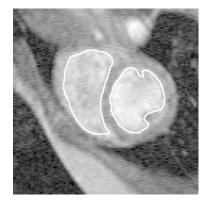
 $[h_1, h_2, h_3, h_4, h_5, h_6, h_7]$

Tracking: some applications

Body pose tracking, activity recognition

Censusing a bat population

Video-based interfaces



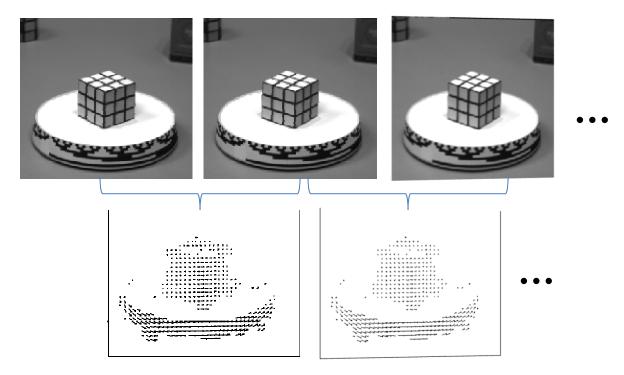
Medical

Surveillance

Kristen Grauman

Optical flow for tracking?

If we have more than just a pair of frames, we could compute flow from one to the next:



But flow only reliable for small motions, and we may have occlusions, textureless regions that yield bad estimates anyway...

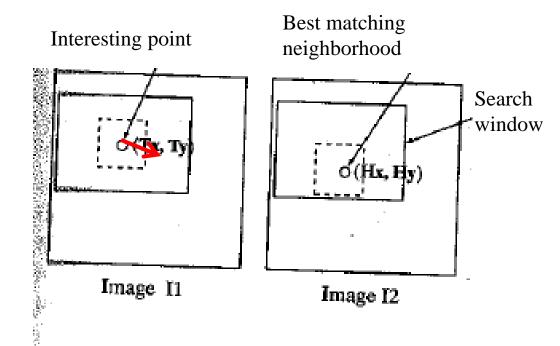
Motion estimation techniques

- Direct methods
 - Directly recover image motion at each pixel from spatio-temporal image brightness variations
 - Dense motion fields, but sensitive to appearance variations
 - Suitable for video and when image motion is small

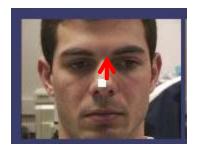
Feature-based methods

- Extract visual features (corners, textured areas) and track them over multiple frames
- Sparse motion fields, but more robust tracking
- Suitable when image motion is large (10s of pixels)

Feature-based matching for motion



Time t+1



Time t

Search window is centered at the point where we last saw the feature, in image I1.

Best match = position where we have the highest normalized cross-correlation value.

Kristen Grauman

Example: A Camera Mouse

 Video interface: use feature tracking as mouse replacement

• User clicks on the feature to be tracked

- Take the 15x15 pixel square of the feature
- In the next image do a search to find the 15x15 region with the highest correlation
- Move the mouse pointer accordingly
- Repeat in the background every 1/30th of a second

Example: A Camera Mouse

Specialized software for communication, games

James Gips and Margrit Betke http://www.bc.edu/schools/csom/eagleeyes/

Kristen Grauman

Detection vs. tracking

t=1

t=2

t=20

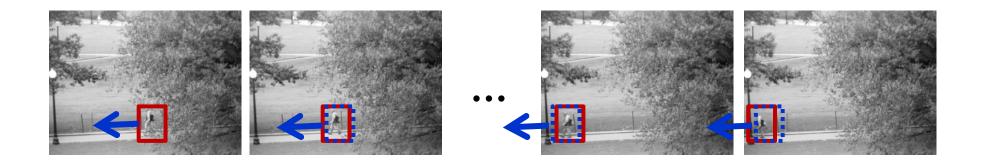
t=21

Detection vs. tracking

Detection: We detect the object independently in each frame and can record its position over time, e.g., based on blob's centroid or detection window coordinates

Kristen Grauman

Detection vs. tracking



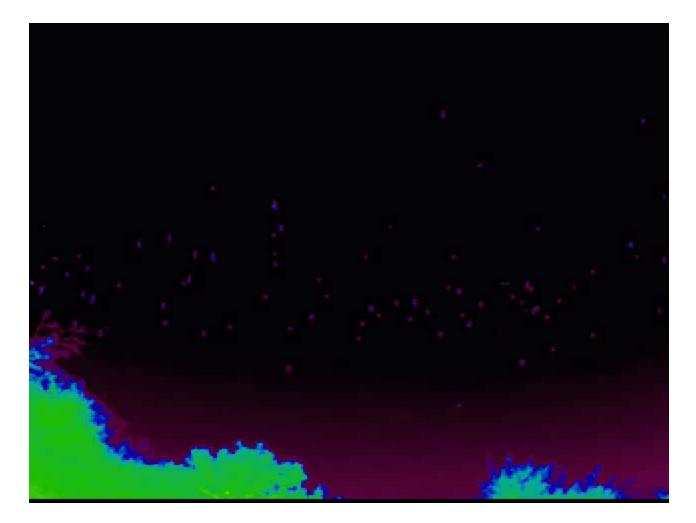
Tracking with *dynamics*: We use image measurements to estimate position of object, but also incorporate position predicted by dynamics, i.e., our expectation of object's motion pattern.

Kristen Grauman

Tracking with dynamics

- Use model of expected motion to *predict* where objects will occur in next frame, even before seeing the image
- Intent:
 - Do less work looking for the object, restrict the search
 - Get improved estimates since measurement noise is tempered by smoothness, dynamics priors
- Assumption: continuous motion patterns:
 - Camera is not moving instantly to new viewpoint
 - Objects do not disappear and reappear in different places in the scene
 - Gradual change in pose between camera and scene

A bat census



http://www.cs.bu.edu/~betke/research/bats/

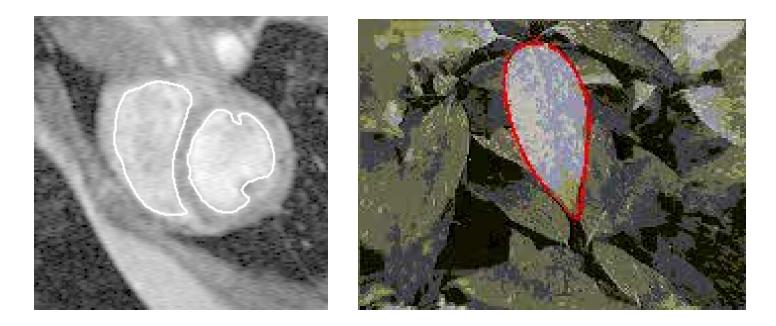
- Initialization
 - Often done manually
 - Background subtraction, detection can also be used
- Data association, multiple tracked objects
 - Occlusions, clutter

- Initialization
 - Often done manually
 - Background subtraction, detection can also be used
- Data association, multiple tracked objects
 - Occlusions, clutter
 - Which measurements go with which tracks?

- Initialization
 - Often done manually
 - Background subtraction, detection can also be used
- Data association, multiple tracked objects
 - Occlusions, clutter
- Deformable and articulated objects

Tracking via deformable contours

- 1. Use final contour/model extracted at frame t as an initial solution for frame t+1
- 2. Evolve initial contour to fit exact object boundary at frame t+1
- 3. Repeat, initializing with most recent frame.

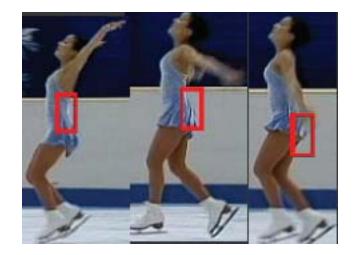


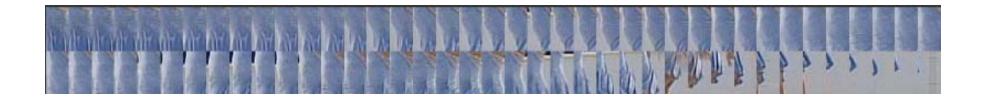
Visual Dynamics Group, Dept. Engineering Science, University of Oxford.

• Initialization

- Often done manually
- Background subtraction, detection can also be used
- Data association, multiple tracked objects
 - Occlusions, clutter
- Deformable and articulated objects
- Constructing accurate models of dynamics
 - E.g., Fitting parameters for a linear dynamics model
- Drift
 - Accumulation of errors over time

Drift





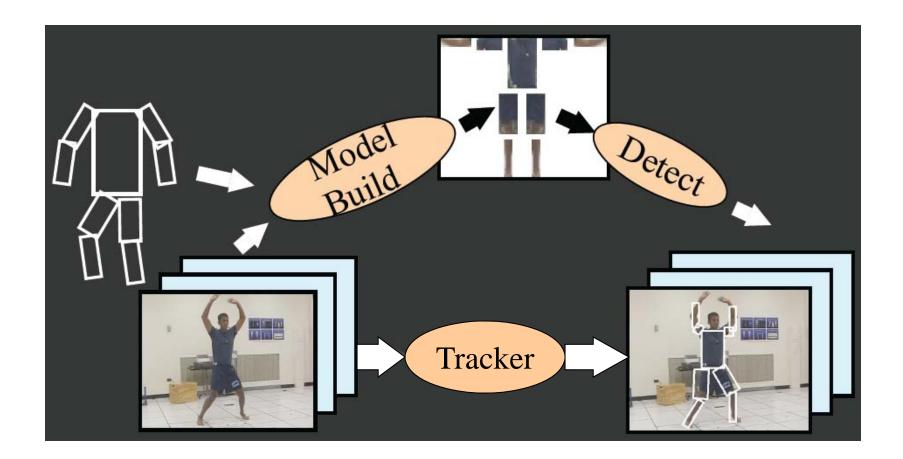
D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their Appearance</u>. PAMI 2007.

Tracking people

- Person model = appearance + structure (+ dynamics)
- Structure and dynamics are general, appearance is person-specific
- Trying to acquire an appearance model "on the fly" can lead to drift
- Instead, can use the whole sequence to initialize the appearance model and then keep it fixed while tracking
- Given strong structure and appearance models, tracking can essentially be done by repeated detection (with some smoothing)

D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their</u> <u>Appearance</u>. PAMI 2007.

Tracking people by learning their appearance



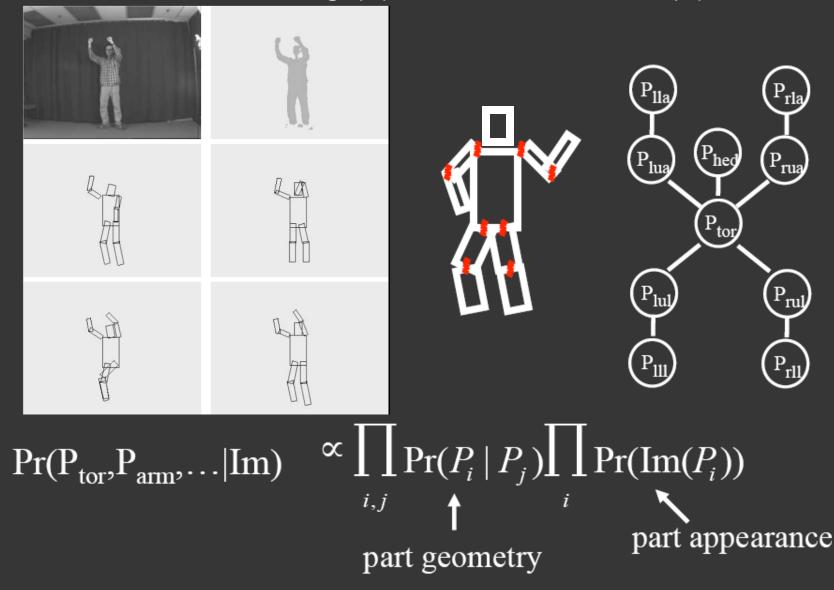
D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their</u> <u>Appearance</u>. PAMI 2007.

Top-down method to build model: Exploit "easy" poses

D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their</u> <u>Appearance</u>. PAMI 2007.

Pictorial structure model

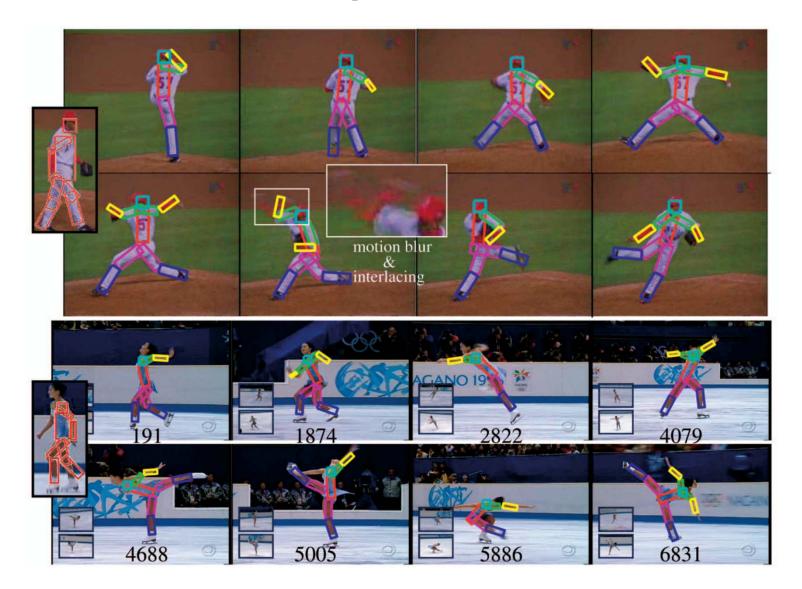
Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)



Temporal model

• Parts cannot move too far

Example results



What is an action?

Action: a transition from one state to another

- Who is the actor?
- How is the state of the actor changing?
- What (if anything) is being acted on?
- How is that thing changing?
- What is the purpose of the action (if any)?

How do we represent actions?

Categories

Walking, hammering, dancing, skiing, sitting down, standing up, jumping

Nouns and Predicates

<man, swings, hammer> <man, hits, nail, w/ hammer>

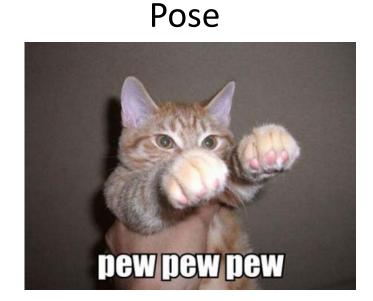
What is the purpose of action recognition?

• To describe

• To predict

How can we identify actions?

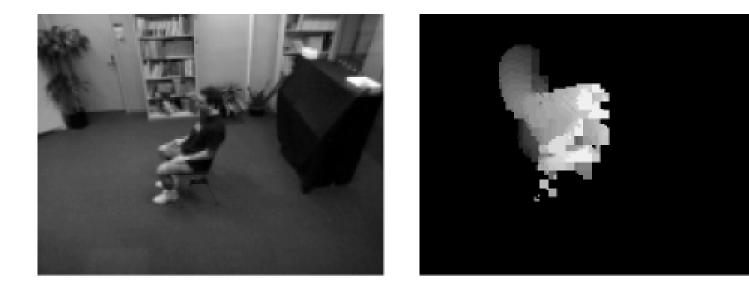
Motion



Held Objects

Nearby Objects

Representing Motion Optical Flow with Motion History

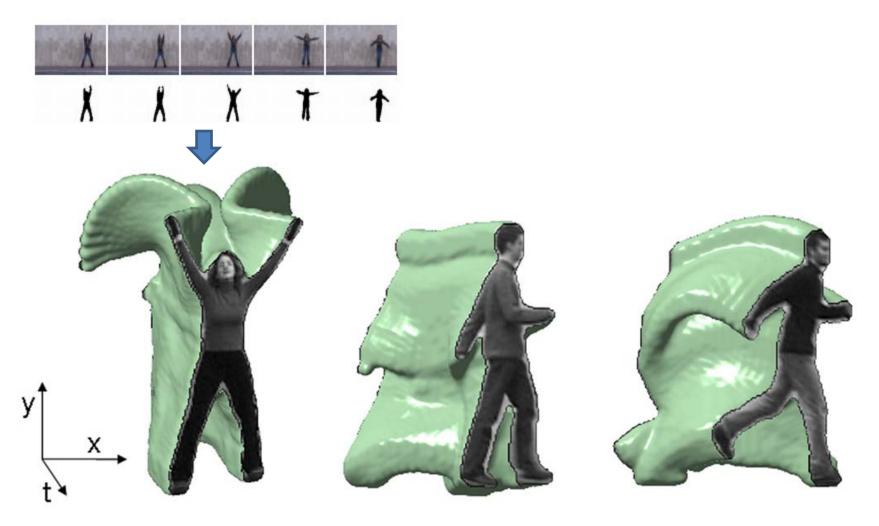


sit-down

sit-down MHI

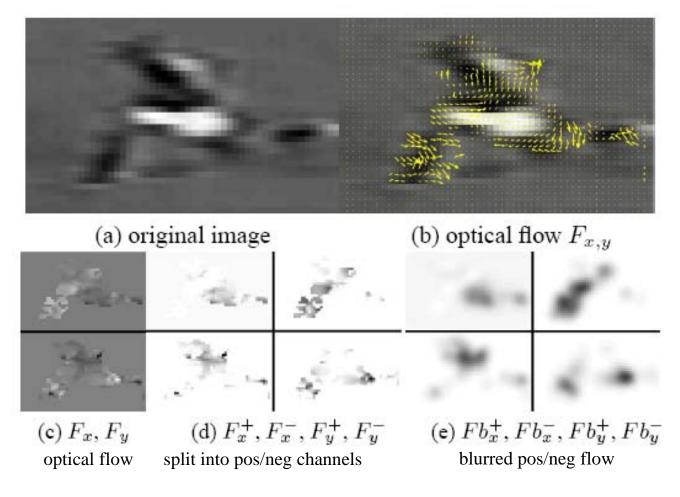
Bobick Davis 2001

Representing Motion Space-Time Volumes



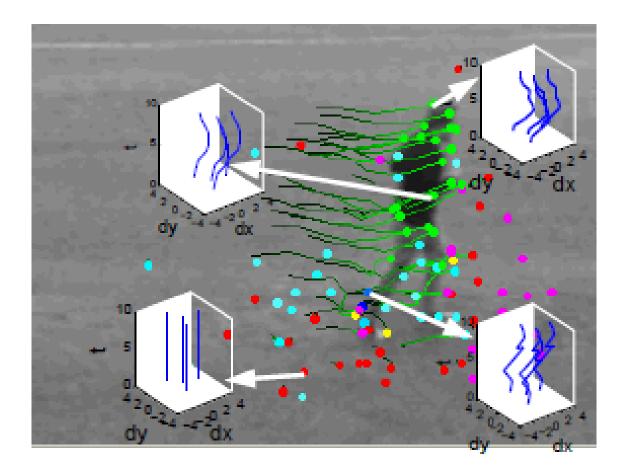
Blank et al. 2005

Representing Motion Optical Flow with Split Channels



Efros et al. 2003

Representing Motion Tracked Points



Matikainen et al. 2009

Representing Motion Space-Time Interest Points

Moving corner Ball hits wall tre Balls collide Balls collide (different scale)

Corner detectors in spacetime

Laptev 2005

Examples of Action Recognition Systems

• Feature-based classification

• Recognition using pose and objects

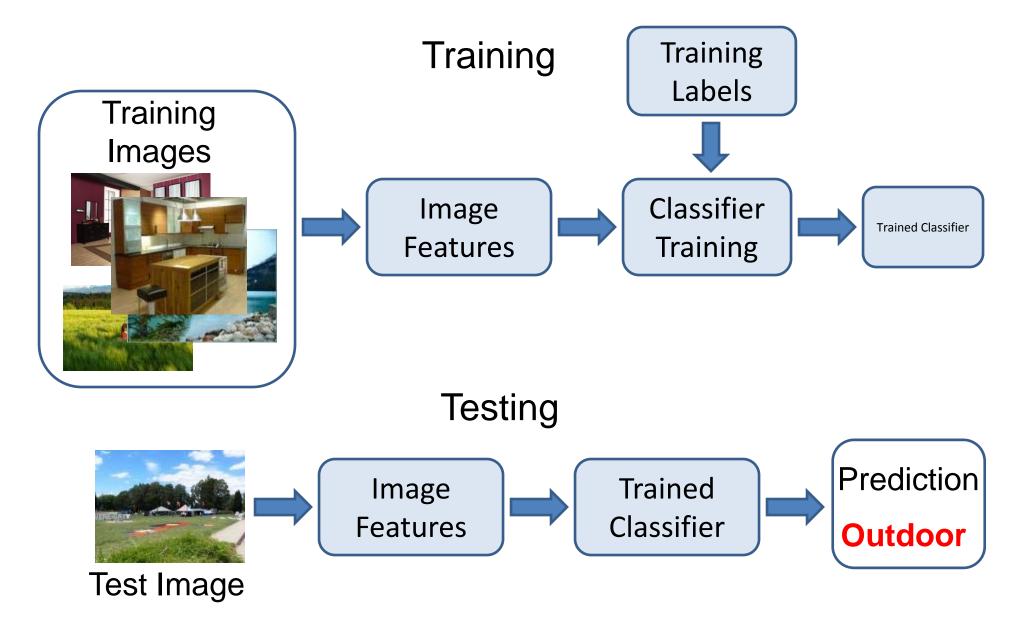
Action recognition as classification

training samples

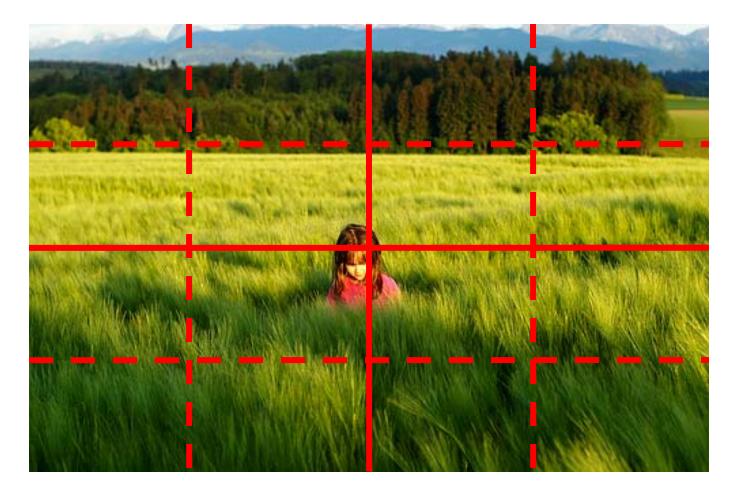
test samples

Retrieving actions in movies, Laptev and Perez, 2007

Remember image categorization...



Remember spatial pyramids....

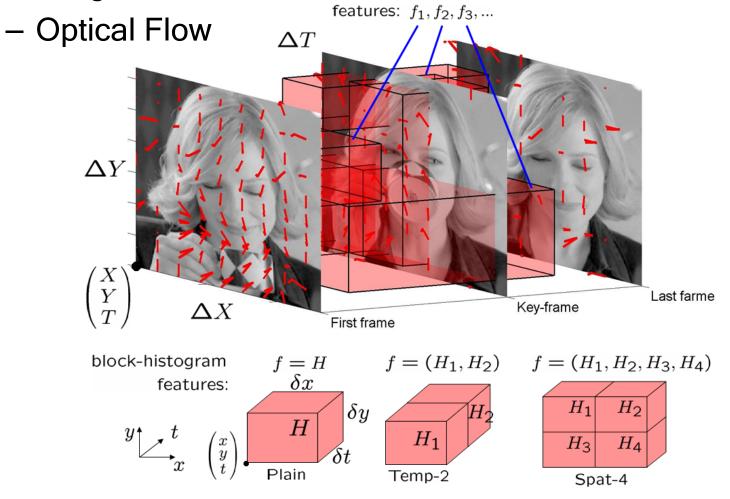


Compute histogram in each spatial bin

Features for Classifying Actions

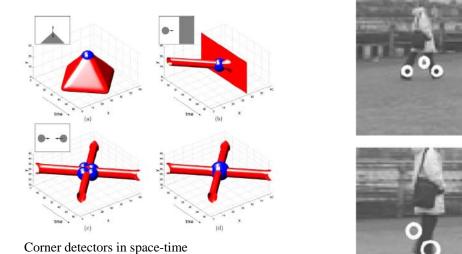
1. Spatio-temporal pyramids

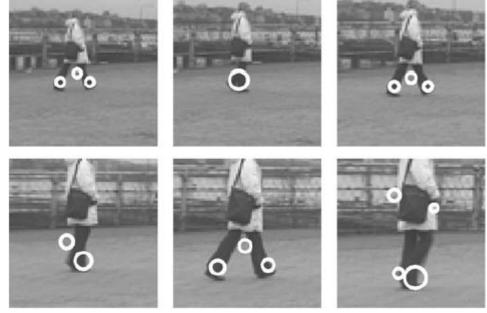
- Image Gradients



Features for Classifying Actions

2. Spatio-temporal interest points

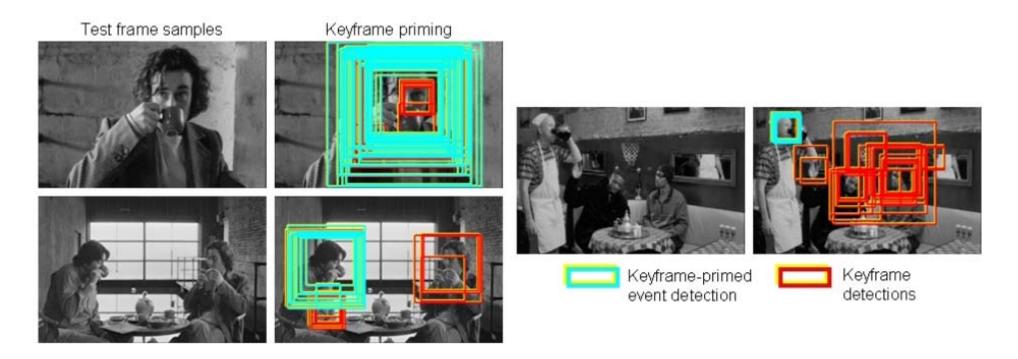




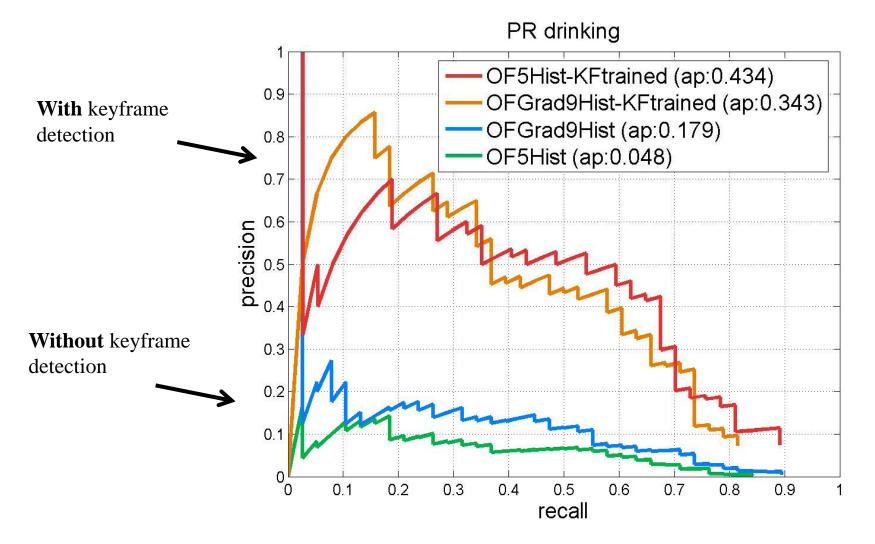
Descriptors based on Gaussian derivative filters over x, y, time

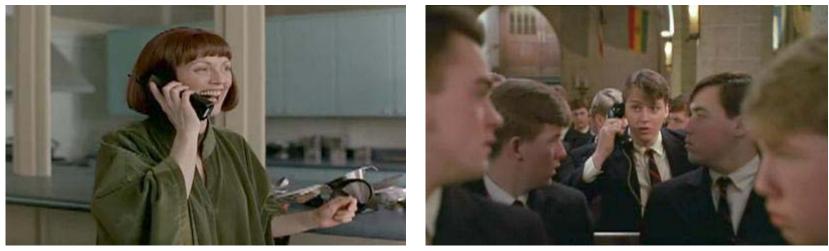
Searching the video for an action

- 1. Detect keyframes using a trained HOG detector in each frame
- 2. Classify detected keyframes as positive (e.g., "drinking") or negative ("other")



Accuracy in searching video





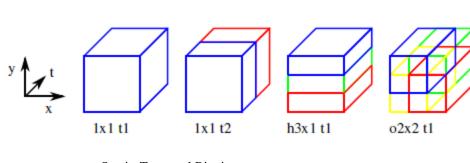
"Talk on phone"

"Get out of car"

Learning realistic human actions from movies, Laptev et al. 2008

Approach

- Space-time interest point detectors
- Descriptors
 HOG, HOF
- Pyramid histograms (3x3x2)
- SVMs with Chi-Squared Kernel



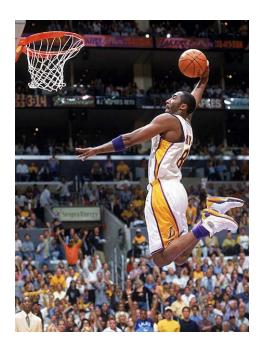
Interest Points

Spatio-Temporal Binning

Results

Task	HoG BoF	HoF BoF	Best channel	Best combination
KTH multi-class	81.6%	89.7%	91.1% (hof h3x1 t3)	91.8% (hof 1 t2, hog 1 t3)
Action AnswerPhone	13.4%	24.6%	26.7% (hof h3x1 t3)	32.1% (hof o2x2 t1, hof h3x1 t3)
Action GetOutCar	21.9%	14.9%	22.5% (hof o2x2 1)	41.5% (hof o2x2 t1, hog h3x1 t1)
Action HandShake	18.6%	12.1%	23.7% (hog h3x1 1)	32.3% (hog h3x1 t1, hog o2x2 t3)
Action HugPerson	29.1%	17.4%	34.9% (hog h3x1 t2)	40.6% (hog 1 t2, hog o2x2 t2, hog h3x1 t2)
Action Kiss	52.0%	36.5%	52.0% (hog 1 1)	53.3% (hog 1 t1, hof 1 t1, hof o2x2 t1)
Action SitDown	29.1%	20.7%	37.8% (hog 1 t2)	38.6% (hog 1 t2, hog 1 t3)
Action SitUp	6.5%	5.7%	15.2% (hog h3x1 t2)	18.2% (hog o2x2 t1, hog o2x2 t2, hog h3x1 t2)
Action StandUp	45.4%	40.0%	45.4% (hog 1 1)	50.5% (hog 1 t1, hof 1 t2)

Action Recognition using Pose and Objects



Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities, B. Yao and Li Fei-Fei, 2010

Human-Object Interaction

Holistic image based classification

Integrated reasoning

Human pose estimation

Human-Object Interaction

Holistic image based classification

Integrated reasoning

- Human pose estimation
- Object detection

Human-Object Interaction

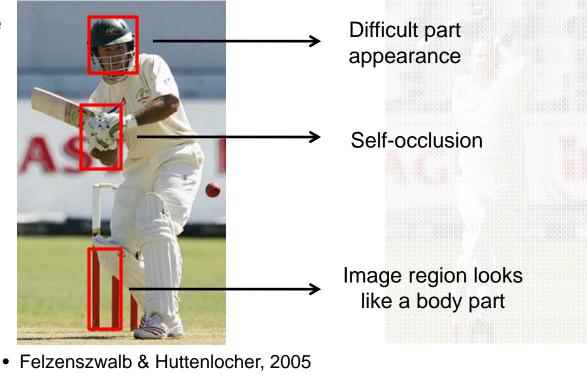
Holistic image based classification

Integrated reasoning

- Human pose estimation
- Object detection
- Action categorization

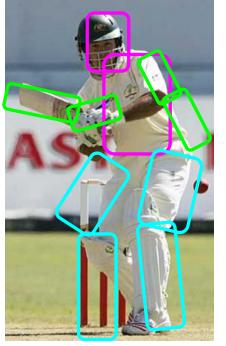
Activity: Tennis Forehand

Human pose estimation is challenging.



- Ren et al, 2005
- Ramanan, 2006
- Ferrari et al, 2008
- Yang & Mori, 2008
- Andriluka et al, 2009
- Eichner & Ferrari, 2009

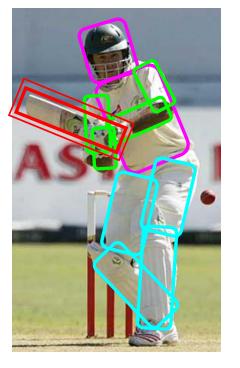
Human pose estimation is challenging.

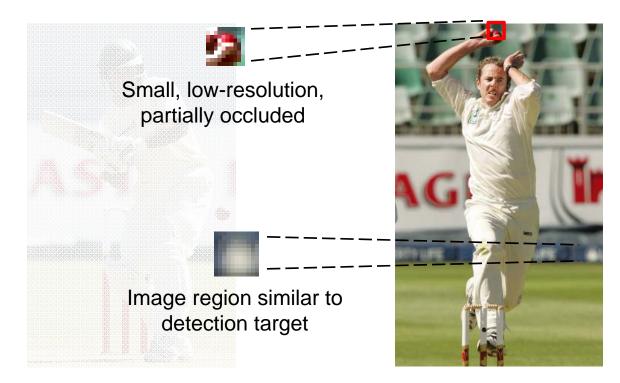


- Felzenszwalb & Huttenlocher, 2005
- Ren et al, 2005
- Ramanan, 2006
- Ferrari et al, 2008
- Yang & Mori, 2008
- Andriluka et al, 2009
- Eichner & Ferrari, 2009

Facilitate

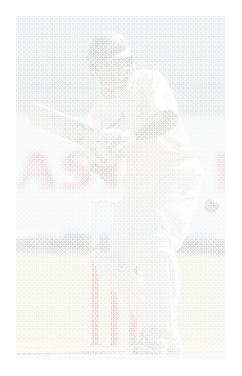
Given the object is detected

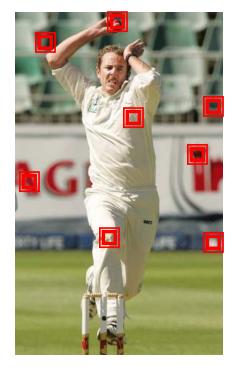




Object detection is challenging

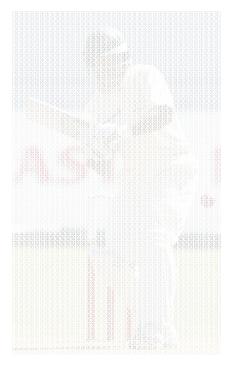
- Viola & Jones, 2001
- Lampert et al, 2008
- Divvala et al, 2009
- Vedaldi et al, 2009

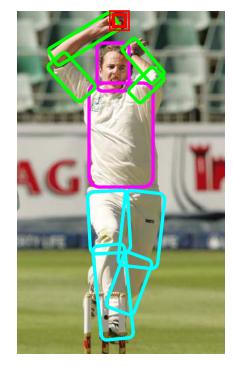




Object detection is challenging

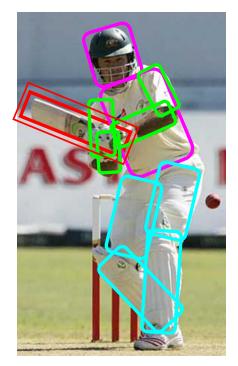
- Viola & Jones, 2001
- Lampert et al, 2008
- Divvala et al, 2009
- Vedaldi et al, 2009

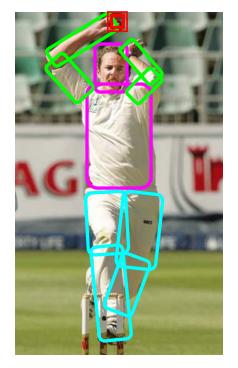




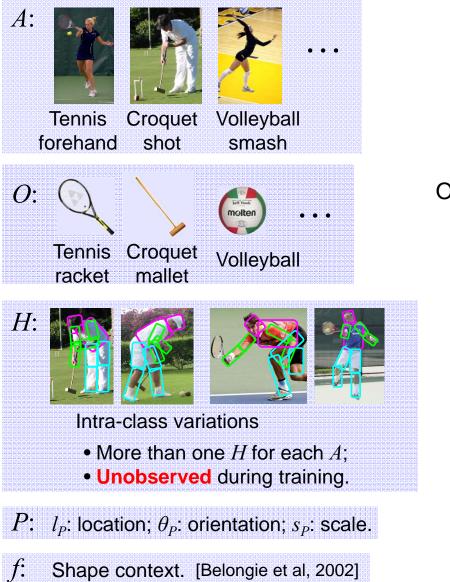
Given the pose is estimated

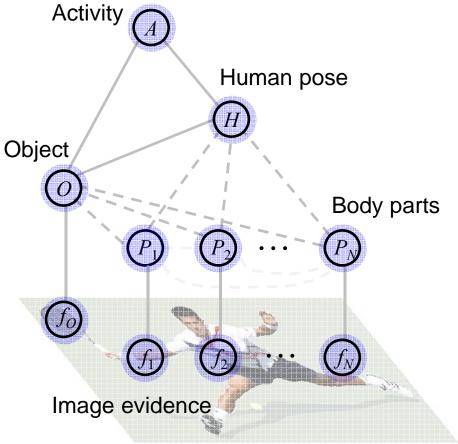
Mutual Context





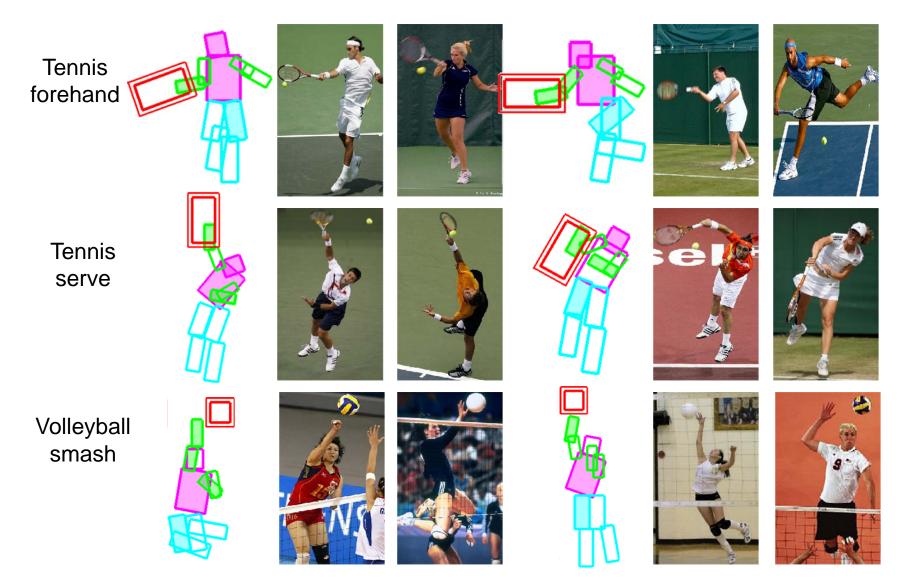
Mutual Context Model Representation





Learning Results

Learning Results



Dataset and Experiment Setup

Sport data set: 6 classes

180 training (supervised with object and part locations) & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

Tasks:

- Object detection;
- Pose estimation;
- Activity classification.

Tennis forehand

[Gupta et al,

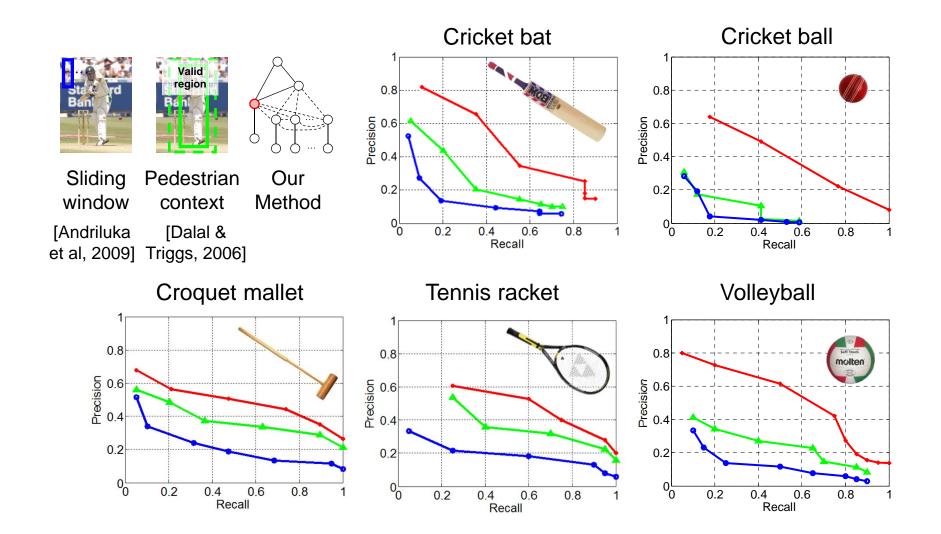
2009]

Tennis

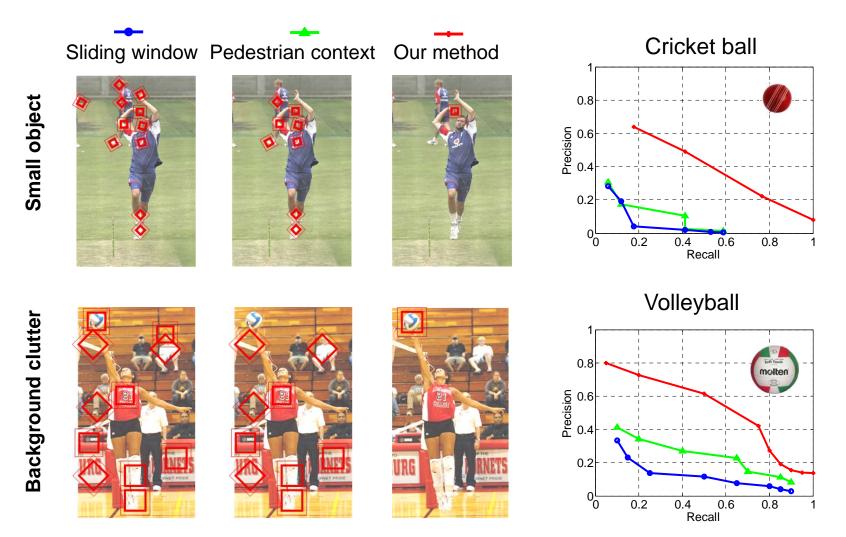
serve

Volleyball smash

Object Detection Results



Object Detection Results



Dataset and Experiment Setup

Sport data set: 6 classes

180 training & 120 testing images

Cricket defensive

Cricket bowling

Croquet shot

<u>Tasks:</u>

- Object detection;
- Pose estimation;
- Activity classification.

Tennis forehand

[Gupta et al,

2009]

Tennis serve

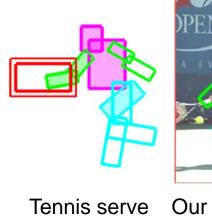
Volleyball smash

Human Pose Estimation Results

Method	Torso	Upper Leg		Lower Leg		Upper Arm		Lower Arm		Head
Ramanan, 2006	.52	.22	.22	.21	.28	.24	.28	.17	.14	.42
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58

Human Pose Estimation Results

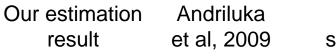
Method	Torso	Upper Leg		Lower Leg		Upper Arm		Lower Arm		Head
Ramanan, 2006	.52	.22	.22	.21	.28	.24	.28	.17	.14	.42
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58

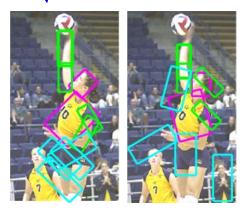


model



result





Our estimation Andriluka Volleyball smash model result et al, 2009

Dataset and Experiment Setup

Sport data set: 6 classes

180 training & 120 testing images

Cricket defensive

Cricket bowling

Croquet shot

Tasks:

- Object detection;
- Pose estimation;
- Activity classification.

Tennis forehand

[Gupta et al,

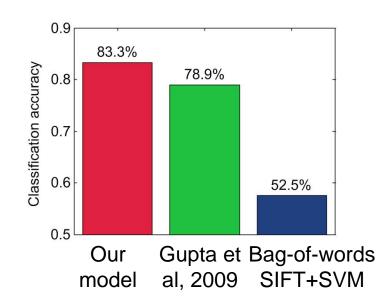
2009]

serve

Tennis

Volleyball smash

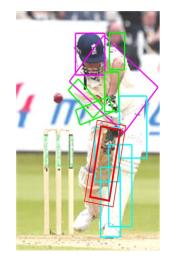
Activity Classification Results

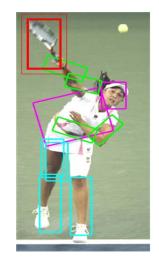


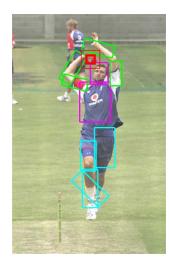
Cricket shot

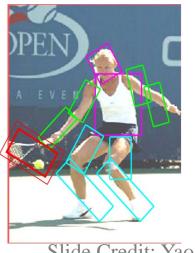
Tennis forehand

is and









Take-home messages

- Action recognition is an open problem.
 - How to define actions?
 - How to infer them?
 - What are good visual cues?
 - How do we incorporate higher level reasoning?

Take-home messages

- Some work done, but it is just the beginning of exploring the problem. So far...
 - Actions are mainly categorical (could be framed in terms of effect or intent)
 - Most approaches are classification using simple features (spatial-temporal histograms of gradients or flow, s-t interest points, SIFT in images)
 - Just a couple works on how to incorporate pose and objects
 - Not much idea of how to reason about long-term activities or to describe video sequences

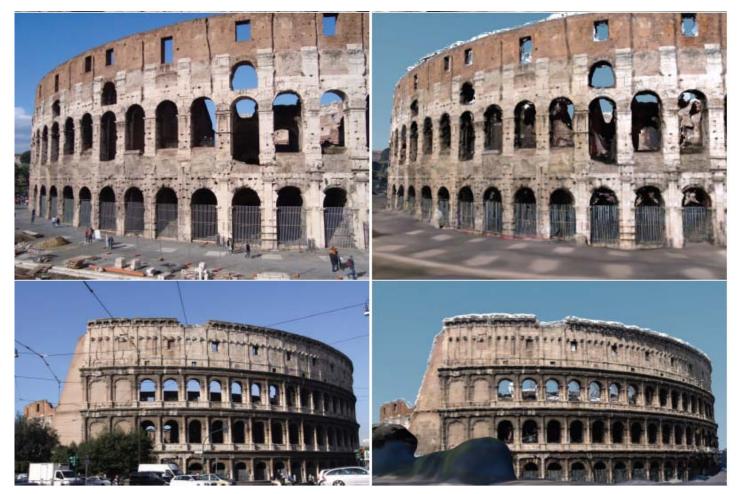
Sources of inspiration

... at least for me

The Campanile Movie

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik University of California at Berkeley

The Visual Turing Test for Scene Reconstruction



Qi Shan, Riley Adams, Brian Curless, Yasutaka Furukawa, and Steven M. Seitz University of Washington and Google Inc.

High-Quality Streamable Free-Viewpoint Video

Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese, Hugues Hoppe, Adam Kirk, Steve Sullivan MICROSOFT CORPORATION