CS 558: Computer Vision 13th Set of Notes

Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215

Overview

- Context and Spatial Layout
- Relating Objects and Geometry
- Putting Objects in Perspective
- Interpretation of indoor scenes
 - Based on slides by D. Hoiem

Context in Recognition

 Objects usually are surrounded by a scene that can provide context in the form of nearby objects, surfaces, scene category, geometry, etc.

Context provides clues for function

• What is this?

Examples from Antonio Torralba

Context provides clues for function

• What is this?

• Now can you tell?

Sometimes context is *the* major component of recognition

• What is this?

Sometimes context is *the* major component of recognition

• What is this?

• Now can you tell?

More Low-Res

• What are these blobs?

More Low-Res

• The same pixels! (a car)

There are many types of context

- Local pixels
 - window, surround, image neighborhood, object boundary/shape, global image statistics
- 2D Scene Gist
 - global image statistics
- 3D Geometric
 - 3D scene layout, support surface, surface orientations, occlusions, contact points, etc.
- Semantic
 - event/activity depicted, scene category, objects present in the scene and their spatial extents, keywords
- Photogrammetric
 - camera height orientation, focal length, lens distortion, radiometric, response function
- Illumination
 - sun direction, sky color, cloud cover, shadow contrast, etc.
- Geographic
 - GPS location, terrain type, land use category, elevation, population density, etc.
- Temporal
 - nearby frames of video, photos taken at similar times, videos of similar scenes, time of capture
- Cultural
 - photographer bias, dataset selection bias, visual clichés, etc.

Cultural context

Cultural context

"Mildred and Lisa": Who is Mildred? Who is Lisa?

Cultural context

Age given Appearance

Age given Name

Andrew Gallagher: http://chenlab.ece.cornell.edu/people/Andy/projectpage names.html

Spatial layout is especially important

1. Context for recognition

Spatial layout is especially important

1. Context for recognition

Spatial layout is especially important

- 1. Context for recognition
- 2. Scene understanding

Spatial Layout: 2D vs. 3D

But object relations are in 3D...

Highly Structured 3D Models

f) Ground Plane with Billboards

g) Ground Plane with Walls

e) Ground Plane

h) Blocks World

i) 3D Box Model

Figs from Hoiem - Savarese 2011 book

High detail, Low abstraction

Depth Map

Saxena, Chung & Ng 2005, 2007

Medium detail, High abstraction

Room as a Box

Hedau Hoiem Forsyth 2009

Med-High detail, High abstraction

Complete 3D Layout

Guo Zou Hoiem 2015

Surface Layout: describe 3D surfaces with geometric classes

The challenge

Our World is Structured

Abstract World

Our World

Image Credit (left): F. Cunin and M.J. Sailor, UCSD

Learn the Structure of the World

Training Images

Infer the most likely interpretation

Unlikely

Likely

Geometry estimation as recognition

Use a variety of image cues

Vanishing points, lines

Color, texture, image location

Texture gradient

Surface Layout Algorithm

Hoiem Efros Hebert (2007)

Surface Layout Algorithm

Geometric Classes

Ground

- Vertical
 - Planar: facing Left (\leftarrow), Center (\uparrow), Right (\rightarrow)
 - Non-planar: Solid (X), Porous (O) or wiry
- Sky

Surface Description Result

Automatic Photo Popup

Labeled Image

Fit Ground-Vertical Boundary with Line Segments

Form Segments into Polylines

Cut and Fold

Final Pop-up Model

[Hoiem Efros Hebert 2005]

The World Behind the Image

Geometric Cues

Location

Texture

Perspective

Need Good Spatial Support

Need Good Spatial Support

Image Segmentation

• Single segmentation won't work

Solution: multiple segmentations

Labeling Segments

For each segment:

- Get P(good segment | data) P(label | good segment, data)

Image Labeling

Labeled Segmentations

Labeled Pixels

 $P(label | data) \propto \sum_{segments} P(good \ segment | data) P(label | good \ segment, data)$

Labeling Results

Input image

Ground Truth

Results

Input Image

Ground Truth

Results

Input Image

Ground Truth

Results

Input Image

Ground Truth

Failures: Reflections, Rare Viewpoint

Input Image

Ground Truth

Average Accuracy

Main Class: 88%

Subclasses: 61%

Main Class						
	Support	Vertical	Sky			
Support	0.84	0.15	0.00			
Vertical	0.09	0.90	0.02			
Sky	0.00	0.10	0.90			

Vertical Subclass							
	Left	Center	Right	Porous	Solid		
Left	0.37	0.32	0.08	0.09	0.13		
Center	0.05	0.56	0.12	0.16	0.12		
Right	0.02	0.28	0.47	0.13	0.10		
Porous	0.01	0.07	0.03	0.84	0.06		
Solid	0.04	0.20	0.04	0.17	0.55		

Automatic Photo Popup

[SIGGRAPH 2005]

Relating Objects and Geometry

Knowledge of Geometry Critical for Object Detection

What can we do with these models?

- Local Queries (marginalization)
 - What is the likelihood that this is a car?
 - What is the distribution of the camera height given the image?
- Global Queries (maximization)
 - What is the most likely complete hypothesis of objects, geometry, parameters?

Objects

- Object detector:
 - Defines a set of objects
 - Estimate likelihood of object identities at possible locations/scales
- Learn distribution of object heights in the 3D world
 - E.g. consumerreports.com for cars

Geometry

V-Left

V-Center

V-Right

V-Porous

V-Solid

- Geometry estimates: produce probability maps for each label
- Compute:
 - Likelihoods of object identities at each position given the geometry and image data
 - Likelihood of geometry given image data
- Initial estimates (top of ground, bottom of sky) help horizon estimate

Camera Parameters

- Camera Height Estimate prior from training images
- Horizon Position Estimate based on prior, estimated geometry, and potential vanishing points
- Identified objects of known height distribution help refine camera parameter estimates

Local Queries (Marginalization)

- Exact marginalization not tractable
- Assumptions
 - Objects depend on local geometry
 - Local geometry independent
 - Objects independent given camera parameters

- Approximations
 - Marginalize only over hypotheses that have at most one other object
 - Discard extremely unlikely objects/camera parameters early

How far can camera parameters get us?

- What the system knows:
 - Estimated horizon position
 - Camera height prior (in meters)
 - Distribution of car heights in the world (in meters)
 - No other image data!
- What the system tells you:
 - 50% confidence interval for size of car (in the image) given bottom-center position
 - 50% confidence intervals for camera parameters

Hallucinations: Camera Parameters

No Objects Given

1 Object Given

Hallucinations: Camera Parameters

No Objects Given

1 Object Given

How far can camera parameters and geometry get us?

- What the system knows:
 - Same as before but with geometry estimates
 - No other image data!
- What the system tells you:
 - Most likely position/size of car in image
 - 50% confidence intervals for camera parameters

Hallucinations: Geometry and Camera Parameters

Estimated Geometry

No Object Given

1 Object Given

How much do geometry estimates help (with local image data)?

 40 contextual features based on average confidence values of geometric labels within windows

Example Results

+ 40 context features

[ICCV 2005]

Global Queries (Maximization)

- Provides full image interpretation (for modeled aspects of scene)
- Finding optimal solution is intractable
 - Branch and bound algorithm
 - Greedy algorithms
- Usefulness depends on the peakedness of the joint distribution

Putting Objects in Perspective

Derek Hoiem Alexei A. Efros Martial Hebert

Carnegie Mellon University Robotics Institute

Local Object Detection

Local Detector: [Dalal-Triggs 2005]

Real Relationships are 3D

Close

Objects and Scenes

- Biederman's Relations among Objects in a Well-Formed Scene (1981):
 - Support
 - Size

- Position
- Interposition
- Likelihood of Appearance

Contribution of this Research

 Biederman's Relations among Objects in a Well-Formed Scene (1981):

- Position
- Interposition
- Likelihood of Appearance

Object Support

Object Size in the Image

Is the person or the car taller?

World

Object Size ↔ Camera Viewpoint

Input Image

Loose Viewpoint Prior

Object Position/Sizes

Object Position/Sizes

Object Position/Sizes

Object Position/Sizes

What does surface and viewpoint say about objects?

Image

P(surfaces)

P(viewpoint)

P(object)

P(object | surfaces)

P(object | viewpoint)

What does surface and viewpoint say about objects?

P(object)

P(object | surfaces, viewpoint)

Scene Parts Are All Interconnected

Camera Viewpoint

3D Surfaces

Input to Algorithm

Object Detection

Local Car Detector

Local Ped Detector

Local Detector: [Dalal-Triggs 2005]

Surface Estimates

Surfaces: [Hoiem-Efros-Hebert 2005]

Viewpoint Prior

Scene Parts Are All Interconnected

Approximate Model

Viewpoint

3D Surfaces

Object detection

Car: TP / FP Ped: TP / FP

Car Detection

Initial (Local)

4 TP / 2 FP

Final (Global)

4 TP / 1 FP

Ped Detection

 $^{3 \}text{ TP} / 2 \text{ FP}$

4 TP / 0 FP Local Detector: [Dalal-Triggs 2005]

Experiments on LabelMe Dataset

- Testing with LabelMe dataset:
 - Cars as small as 14 pixels
 - Peds as small as 36 pixels

More Tasks \rightarrow Better Detection

Local Detector from Murphy et al. 2003

[Hoiem Efros Hebert 2006]

Good Detectors Become Better

Local Detector from Dalal-Triggs 2005

Better Detectors → Better Viewpoint

90% Bound:

More is Better

More objects→Better viewpoint estimatesDetect Cars Only7.3% ErrorDetect Peds Only5.0% ErrorDetect Both3.8% Error

Better viewpoint \rightarrow Better object detection 10% fewer false positives at same detection rate

Qualitative Results

Car: TP / FP Ped: TP / FP

Initial: 6 TP / 1 FP

Final: 9 TP / 0 FP

Qualitative Results

Car: TP / FP Ped: TP / FP

Initial: 3 TP / 3 FP

Final: 5 TP / 1 FP

Putting Objects in Perspective

Interpretation of indoor scenes

Vision = assigning labels to pixels?

Vision = interpreting within physical space

Physical space needed for affordance

Walkable path

Is this a good place to sit?

Physical space needed for recognition

Physical space needed for recognition

Key challenges

How to represent the physical space?
 – Requires seeing beyond the visible

- How to estimate the physical space?
 - Requires simplified models
 - Requires learning from examples

Box Layout

Room is an oriented 3D box

- Three vanishing points specify orientation
- Two pairs of sampled rays specify position/size

Box Layout

Another box consistent with the same vanishing points

0

0

Image Cues for Box Layout

- Straight edges
 - Edges on floor/wall surfaces are usually oriented towards VPs
 - Edges on objects might mislead
- Appearance of visible surfaces
 - Floor, wall, ceiling,
 object labels should
 be consistent with box

Box Layout Algorithm

- 1. Detect edges
- 2. Estimate 3 orthogonal vanishing points
- 3. Apply region classifier to label pixels with visible surfaces
 - Boosted decision trees on region based on color, texture, edges, position
- 4. Generate box candidates by sampling pairs of rays from VPs
- 5. Score each box based on edges and pixel labels
 - Learn score via structured learning
- 6. Jointly refine box layout and pixel labels to get final estimate

Evaluation

Dataset: 308 indoor images
 – Train with 204 images, test with 104 images

Experimental results

Detected Edges

Surface Labels

Box Layout

Detected Edges

Surface Labels

Box Layout

Experimental results

Detected Edges

Surface Labels

Box Layout

Detected Edges

Surface Labels

Box Layout

Experimental results

- Joint reasoning of surface label / box layout helps
 - − Pixel error: $26.5\% \rightarrow 21.2\%$
 - Corner error: 7.4% \rightarrow 6.3%
- Similar performance for cluttered and uncluttered rooms

Using room layout to improve object detection

Box layout helps

- 1. Predict the appearance of objects, because they are often aligned with the room
- 2. Predict the position and size of objects, due to physical constraints and size consistency

2D Bed Detection

3D Bed Detection with Scene Geometry

Hedau, Hoiem, Forsyth, ECCV 2010, CVPR 2012