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Overview

• Deep Learning for Computer Vision

– Based on slides by M. Ranzato (mainly), S. 
Lazebnik, R. Fergus and Q. Zhang



Natural Neurons

• Human recognition of digits
– visual cortices 
– neuron interaction



Recognizing Handwritten Digits

• How to describe a digit to a computer
– "a 9 has a loop at the top, and a vertical stroke in 
the bottom right“

– Algorithmically difficult to describe various 9s 



Perceptrons

• Perceptrons
• 1950s ~ 1960s, Frank Rosenblatt, inspired by earlier 
work by Warren McCulloch and Walter Pitts

• Standard model of artificial neurons



Binary Perceptrons

• Inputs
• Multiple binary inputs

• Parameters
• Thresholds & weights

• Outputs
• Thresholded weighted

linear combination



Layered Perceptrons

• Layered, complex model
• 1st layer, 2nd layer of  
perceptrons

• Perceptron rule 
• Weights, thresholds

• Similarity to logical 
functions (NAND)



Sigmoid Neurons

• Sigmoid neurons
• Stability 

• Small perturbation, small 
output change

• Continuous inputs
• Continuous outputs
• Soft thresholds



Output Functions

• Sigmoid neurons
• Output

• Sigmoid vs conventional 
thresholds



Smoothness & Differentiability 

• Perturbations and 
Derivatives
• Continuous function
• Differentiable

• Layers
• Input layers, output layers, 
hidden layers



Layer Structure Design

• Design of hidden layer
• Heuristic rules
• Number of hidden layers vs. 
computational resources

• Feedforward network 
• No loops involved



Cost Function & Optimization

• Learning with gradient descent
• Cost function 
• Euclidean loss
• Non‐negative, smooth, 
differentiable



Cost Function & Optimization

• Gradient Descent

• Gradient vector



Cost Function & Optimization

• Extension to multiple dimension
• m variables 
• Small change in variable 
• Small change in cost 



Neural Nets for Vision

Based on Tutorials at CVPR 2012 
and 2014 by

Marc’Aurelio Ranzato



Building an Object Recognition System

IDEA: Use data to optimize features for the 
given task



Building an Object Recognition System

What we want: Use parameterized function such that
a) features are computed efficiently
b) features can be trained efficiently



Building an Object Recognition System

• Everything becomes adaptive
• No distinction between feature extractor and classifier
• Big non-linear system trained from raw pixels to labels



Building an Object Recognition System

Q: How can we build such a highly non-linear system?
A: By combining simple building blocks we can make 
more and more complex systems



Building a Complicated Function

• Function composition is 
at the core of deep 
learning methods

• Each “simple function” 
will have parameters 
subject to training



Building a Complicated Function

• Function composition is at the core of 
deep learning methods

• Each “simple function” will have 
parameters subject to training



Implementing a Complicated Function



Intuition Behind Deep Neural Nets



Intuition Behind Deep Neural Nets

Each black box can have trainable parameters. Their 
composition makes a highly non-linear system.



Intuition Behind Deep Neural Nets

System produces hierarchy of features



Intuition Behind Deep Neural Nets



Intuition Behind Deep Neural Nets



Intuition Behind Deep Neural Nets



Key Ideas of Neural Nets
IDEA # 1

Learn features from data
IDEA # 2

Use differentiable functions that produce
features efficiently

IDEA # 3
End-to-end learning:

no distinction between feature extractor and 
classifier
IDEA # 4

“Deep” architectures:
cascade of simpler non-linear modules



Key Questions

• What is the input-output mapping?

• How are parameters trained?

• How computational expensive is it?

• How well does it work?



Supervised Deep Learning

Marc’Aurelio Ranzato



Supervised Learning 
{(xi, yi), i=1... P } training set
xi i-th input training example
yi i-th target label
P number of training examples

• Goal: predict the target label of unseen inputs



Supervised Learning Examples



Supervised Deep Learning



Neural Networks

Assumptions (for the next few slides):
• The input image is vectorized (disregard the 

spatial layout of pixels)
• The target label is discrete (classification)

Question: what class of functions shall we consider 
to map the input into the output?
Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? 
What are the “simpler” functions? What is the 
interpretation?
Answer: later...



Neural Networks: example

x input
h1 1-st layer hidden units
h2 2-nd layer hidden units
o output

Example of a 2 hidden layer neural network (or 4 
layer network, counting also input and output)



Forward Propagation

Forward propagation is the process of 
computing the output of the network given its 
input



Forward Propagation

W 1 1st layer weight matrix or weights
b 1 1st layer biases

• The non-linearity u=max(0,v) is called ReLU in the DL literature.
• Each output hidden unit takes as input all the units at the 

previous layer: each such layer is called “fully connected”



Rectified Linear Unit (ReLU)
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Forward Propagation

W 2 2nd layer weight matrix or weights
b 2 2nd layer biases



Forward Propagation

W 3 3rd layer weight matrix or weights
b 3 3rd layer biases



Alternative Graphical Representations



Interpretation
• Question: Why can't the mapping between layers be 

linear?
• Answer: Because composition of linear functions is a 

linear function. Neural network would reduce to (1 layer) 
logistic regression.

• Question: What do ReLU layers accomplish?
• Answer: Piece-wise linear tiling: mapping is locally linear.



Interpretation
• Question: Why do we need many layers?
• Answer: When input has hierarchical structure, the use 

of a hierarchical architecture is potentially more efficient 
because intermediate computations can be re-used. DL 
architectures are efficient also because they use 
distributed representations which are shared across 
classes.



Interpretation
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Interpretation

• Distributed 
representations

• Feature sharing
• Compositionality
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Interpretation
Question: What does a hidden unit do?
Answer: It can be thought of as a classifier or feature 
detector.

Question: How many layers? How many hidden units?
Answer: Cross-validation or hyper-parameter search 
methods are the answer. In general, the wider and the 
deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?
Answer: Weight matrices and biases are learned. First, we 
need to define a measure of quality of the current 
mapping. Then, we need to define a procedure to adjust 
the parameters.
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How Good is a Network

• Probability of class k given input (softmax):

• (Per-sample) Loss; e.g., negative log-likelihood (good for 
classification of small number of classes):



Training
• Learning consists of minimizing the loss (plus some 

regularization term) w.r.t. parameters over the whole 
training set.

Question: How to minimize a complicated function of the  
parameters?
Answer: Chain rule, a.k.a. Backpropagation! That is the 
procedure to compute gradients of the loss w.r.t. 
parameters in a multi-layer neural network.
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Key Idea: Wiggle to Decrease Loss

• Let's say we want to decrease the loss by adjusting W1
i,j.

• We could consider a very small ϵ=1e-6 and compute:

• Then update:



Backward Propagation
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Backward Propagation
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Backward Propagation
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Optimization

Stochastic Gradient Descent

Or one of its many variants
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Convolutional Neural 
Networks

Marc’Aurelio Ranzato
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Fully Connected Layer



Locally Connected Layer 



Convolutional Layer 



Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer



Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
Question: What is the size of the output? What's the computational 
cost?
Answer: It is proportional to the number of filters and depends on 
the stride. If kernels have size K×K, input has size D×D, stride is 1, 
and there are M input feature maps and N output feature maps then:
- the input has size M×D×D
- the output has size N× (D-K+1) ×(D-K+1)
- the kernels have M×N×K×K coefficients (which have to be learned)
- cost: M×K×K×N×(D-K+1)×(D-K+1)

Question: How many feature maps? What's the size of the filters?
Answer: Usually, there are more output feature maps than input 
feature maps. Convolutional layers can increase the number of 
hidden units by big factors (and are expensive to compute). The 
size of the filters has to match the size/scale of the patterns we want 
to detect (task dependent).
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Key Ideas
• A standard neural net applied to images:

– scales quadratically with the size of the input
– does not leverage stationarity

• Solution:
– connect each hidden unit to a small patch of the 

input
– share the weight across space

• This is called: convolutional layer
• A network with convolutional layers is called 

convolutional network
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Pooling Layer



Pooling Layer



Pooling Layer
Question: What is the size of the output? What's the 
computational cost?
Answer: The size of the output depends on the stride 
between the pools. For instance, if pools do not overlap 
and have size K×K, and the input has size D×D with M 
input feature maps, then:
- output is M@(D/K) ×(D/K)
- the computational cost is proportional to the size of the 
input (negligible compared to a convolutional layer)

Question: How should I set the size of the pools?
Answer: It depends on how much “invariant” or robust to 
distortions we want the representation to be. It is best to 
pool slowly (via a few stacks of conv-pooling layers).
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Local Contrast Normalization



Local Contrast Normalization



Local Contrast Normalization
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Local Contrast Normalization

76



ConvNets: Typical Stage



ConvNets: Typical Architecture
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ConvNets: Typical Architecture
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Conceptually similar to:
SIFT  k-means  Pyramid Pooling  SVM



Engineered vs. learned features

Image

Feature extractionFeature extraction

PoolingPooling

ClassifierClassifier

Label

Image

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

DenseDense

DenseDense

DenseDense

Label

Convolutional filters are trained in a 
supervised manner by back-propagating 
classification error

slide credit: S. Lazebnik



SIFT Descriptor

Image 
Pixels

Apply gradient 
filters

Spatial pool 
(Sum) 

Normalize to unit 
length

Feature 
Vector

slide credit: R. Fergus



AlexNet
• Similar framework to LeCun’98 but:

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012



Input



Conv Nets: Examples
• Pedestrian detection
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Conv Nets: Examples
• Scene Parsing
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Conv Nets: Examples
• Denoising

86



Conv Nets: Examples
• Object Detection
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Conv Nets: Examples
• Face Verification and Identification (DeepFace)
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Conv Nets: Examples
• Regression (DeepPose)


