CS 558: Computer Vision 12th Set of Notes

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/~mordohai

E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

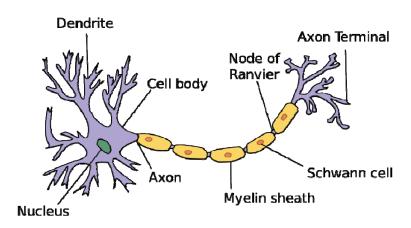
Overview

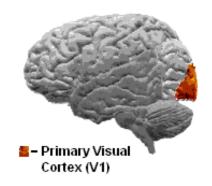
Deep Learning for Computer Vision

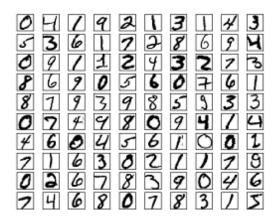
Based on slides by M. Ranzato (mainly), S.
 Lazebnik, R. Fergus and Q. Zhang

Natural Neurons

- Human recognition of digits
 - visual cortices
 - neuron interaction





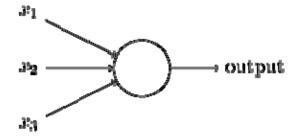


Recognizing Handwritten Digits

- How to describe a digit to a computer
 - "a 9 has a loop at the top, and a vertical stroke in the bottom right"
 - Algorithmically difficult to describe various 9s

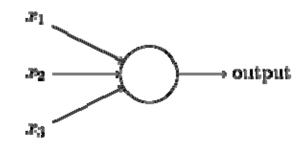
Perceptrons

- Perceptrons
 - 1950s ~ 1960s, Frank Rosenblatt, inspired by earlier work by Warren McCulloch and Walter Pitts
- Standard model of artificial neurons



Binary Perceptrons

- Inputs
 - Multiple binary inputs
- Parameters
 - Thresholds & weights
- Outputs
 - Thresholded weighted linear combination

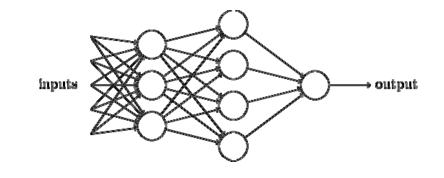


$$ext{output} = egin{cases} 0 & ext{if } \sum_j w_j x_j \leq ext{ threshold} \ 1 & ext{if } \sum_j w_j x_j > ext{ threshold} \end{cases}$$

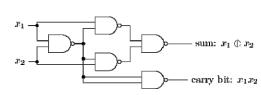
Layered Perceptrons

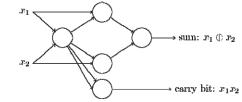
- Layered, complex model
 - 1st layer, 2nd layer of perceptrons

- Weights, thresholds
- Similarity to logical functions (NAND)



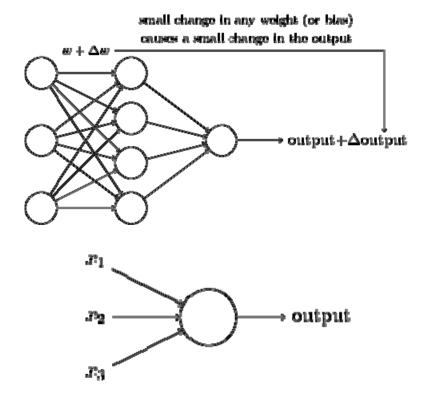
$$output = \begin{cases} 0 & \text{if } w \cdot x + b \le 0 \\ 1 & \text{if } w \cdot x + b > 0 \end{cases}$$





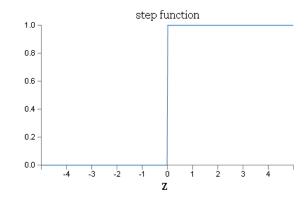
Sigmoid Neurons

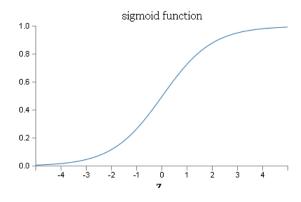
- Sigmoid neurons
 - Stability
 - Small perturbation, small output change
 - Continuous inputs
 - Continuous outputs
 - Soft thresholds



Output Functions

- Sigmoid neurons
- Output $\sigma(w \cdot x + b)$, $\sigma(z) \equiv \frac{1}{1 + e^{-z}}$ $\frac{1}{1 + \exp(-\sum_{j} w_{j} x_{j} b)}$.
- Sigmoid vs conventional thresholds



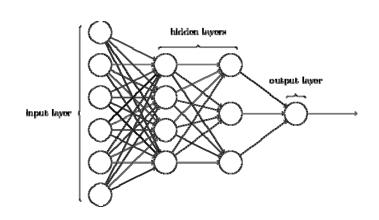


Smoothness & Differentiability

 Perturbations and Derivatives

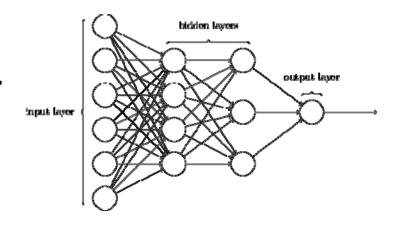
$$\Delta ext{output} pprox \sum_j rac{\partial ext{ output}}{\partial w_j} \Delta w_j + rac{\partial ext{ output}}{\partial b} \Delta b,$$

- Continuous function
- Differentiable
- Layers
 - Input layers, output layers, hidden layers



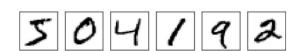
Layer Structure Design

- Design of hidden layer
 - Heuristic rules
 - Number of hidden layers vs. computational resources
 - Feedforward network
 - No loops involved



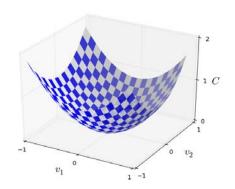
Cost Function & Optimization

Learning with gradient descent



- Cost function
- Euclidean loss
- Non-negative, smooth, differentiable

$$C(w,b) \equiv \frac{1}{2n} \sum_{x} ||y(x) - a||^2$$



Cost Function & Optimization

Gradient Descent

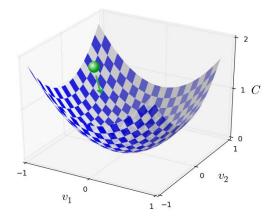
$$\Delta C \approx \frac{\partial C}{\partial v_1} \Delta v_1 + \frac{\partial C}{\partial v_2} \Delta v_2.$$

Gradient vector

$$\nabla C \equiv \left(\frac{\partial C}{\partial v_1}, \frac{\partial C}{\partial v_2}\right)^T$$
.

$$\Delta C \approx \nabla C \cdot \Delta v$$
.

$$v \to v' = v - \eta \nabla C$$
.



Cost Function & Optimization

- Extension to multiple dimension
 - m variables v_1, \ldots, v_m
 - Small change in variable $\Delta v = (\Delta v_1, \dots, \Delta v_m)^T$
 - Small change in cost $\Delta C \approx \nabla C \cdot \Delta v$,

$$\nabla C \equiv \left(\frac{\partial C}{\partial v_1}, \dots, \frac{\partial C}{\partial v_m}\right)^T$$

$$\Delta v = -\eta \nabla C \qquad v \to v' = v - \eta \nabla C.$$

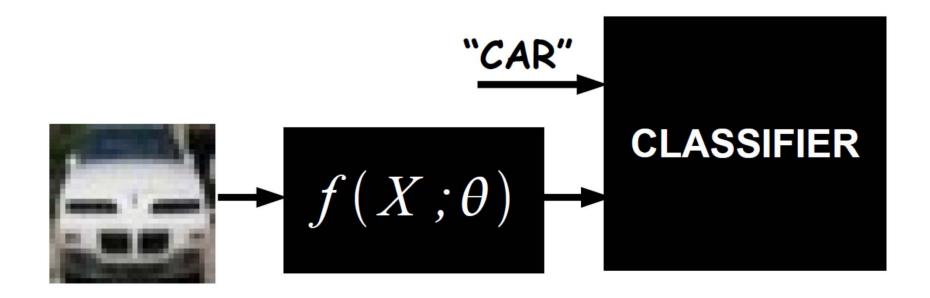
Neural Nets for Vision

Based on Tutorials at CVPR 2012 and 2014 by

Marc'Aurelio Ranzato



IDEA: Use data to optimize features for the given task



What we want: Use parameterized function such that

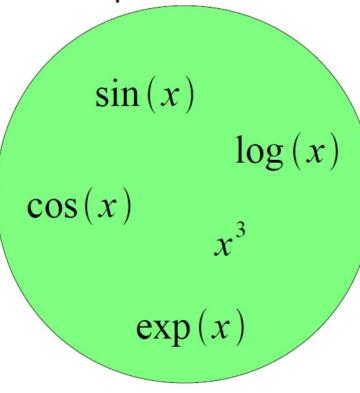
- a) features are computed efficiently
- b) features can be trained efficiently

- Everything becomes adaptive
- No distinction between feature extractor and classifier
- Big non-linear system trained from raw pixels to labels

Q: How can we build such a highly non-linear system?
A: By combining simple building blocks we can make more and more complex systems

Building a Complicated Function

Simple Functions



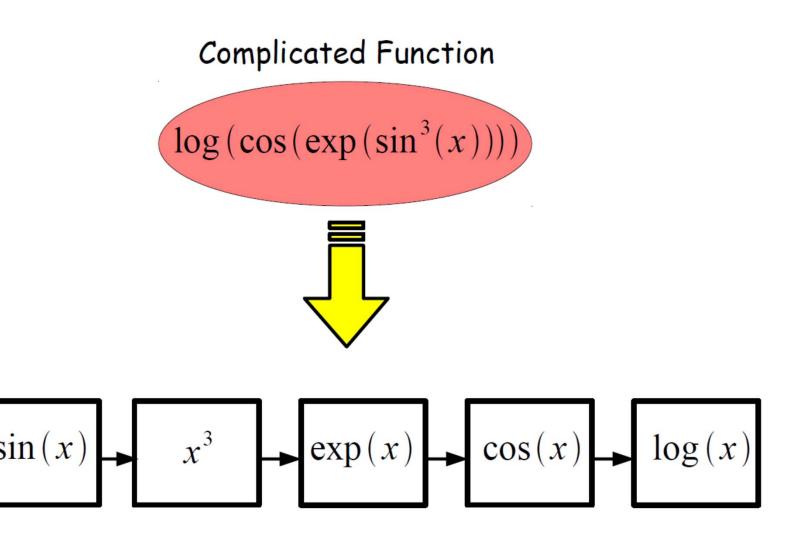
One Example of Complicated Function

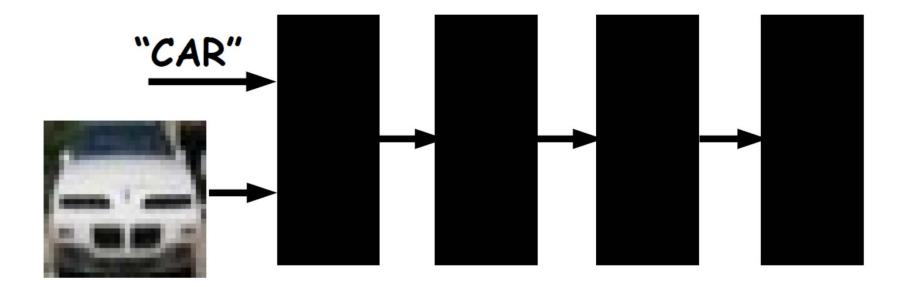
- Function composition is at the core of deep learning methods
- Each "simple function" will have parameters subject to training

Building a Complicated Function

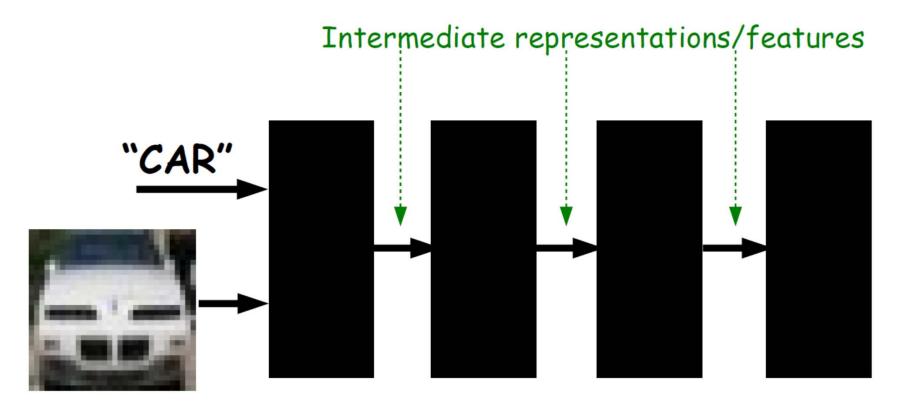
- Function composition is at the core of deep learning methods
- Each "simple function" will have parameters subject to training

Implementing a Complicated Function

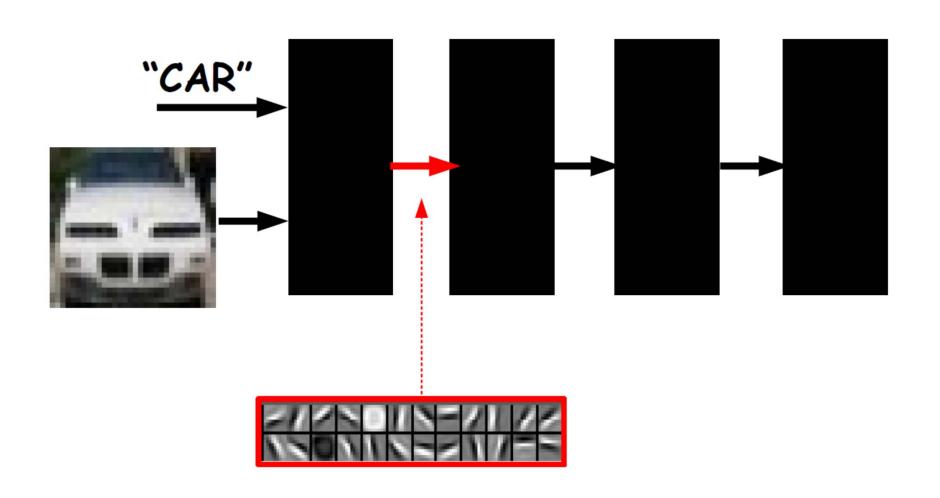


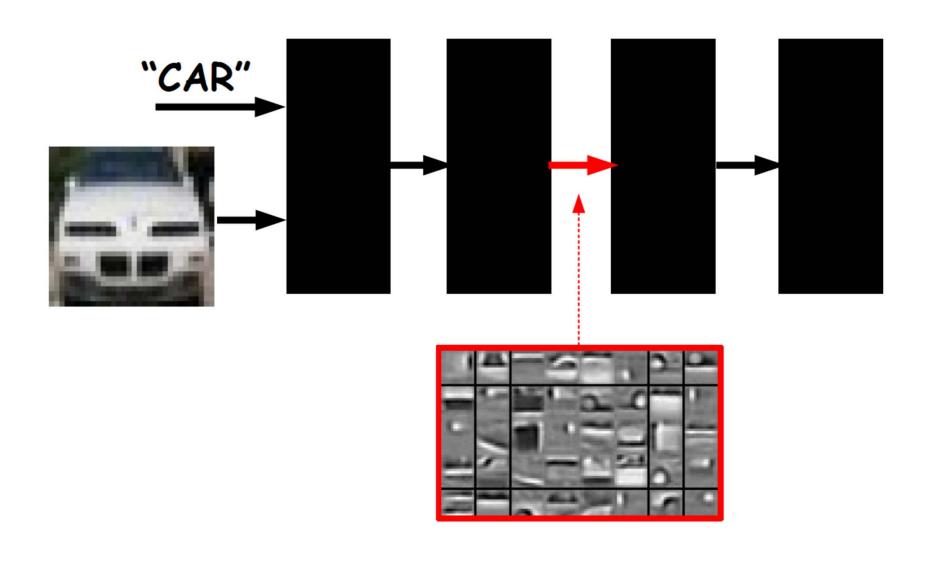


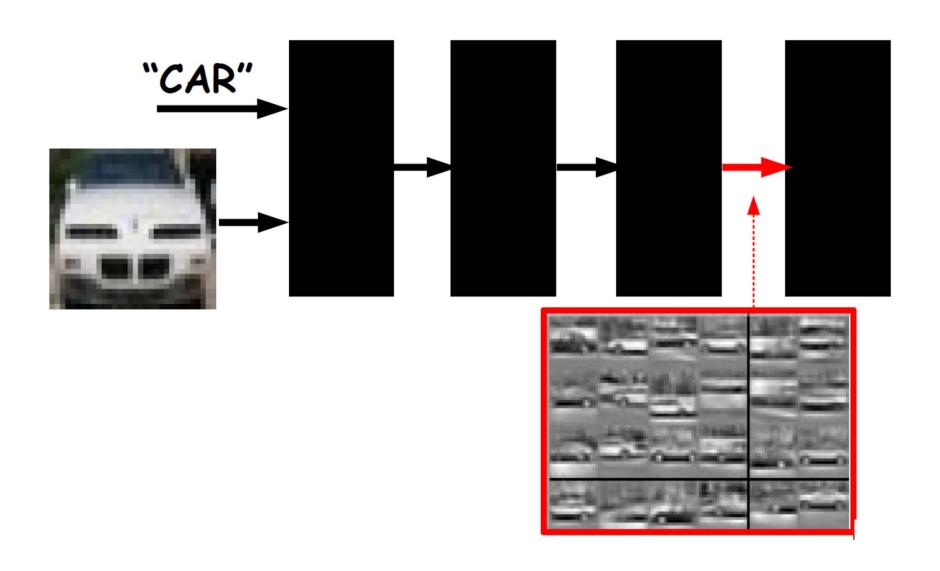
Each black box can have trainable parameters. Their composition makes a highly non-linear system.



System produces hierarchy of features







Key Ideas of Neural Nets

IDEA # 1

Learn features from data

IDEA # 2

Use differentiable functions that produce features efficiently

IDEA #3

End-to-end learning:

no distinction between feature extractor and classifier

IDEA #4

"Deep" architectures: cascade of simpler non-linear modules

Key Questions

- What is the input-output mapping?
- How are parameters trained?
- How computational expensive is it?
- How well does it work?

Supervised Deep Learning

Marc'Aurelio Ranzato

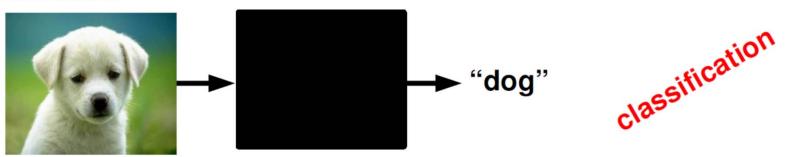
Supervised Learning

{(x_i, y_i), i=1... P } training set x_i i-th input training example y_i i-th target label P number of training examples

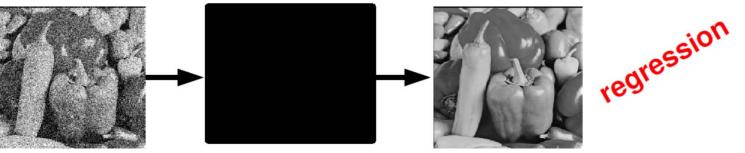
Goal: predict the target label of unseen inputs

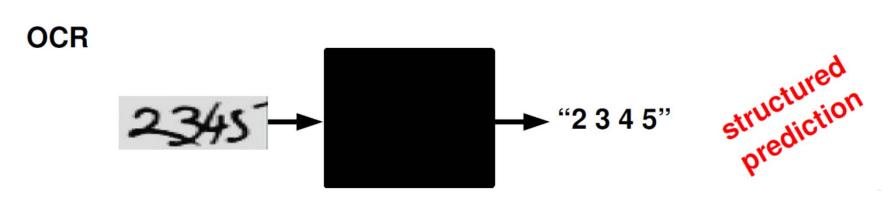
Supervised Learning Examples

Classification



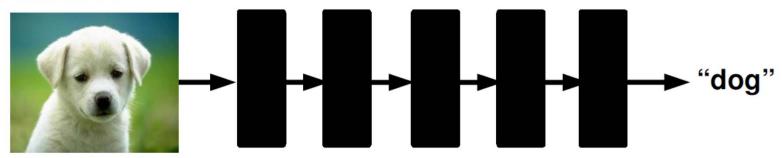
Denoising



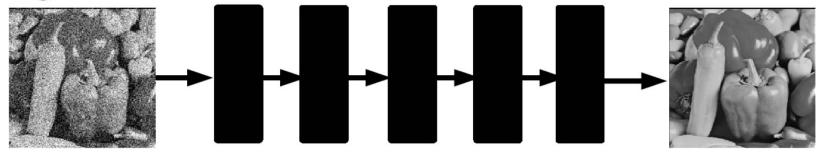


Supervised Deep Learning

Classification



Denoising



Neural Networks

Assumptions (for the next few slides):

- The input image is vectorized (disregard the spatial layout of pixels)
- The target label is discrete (classification)

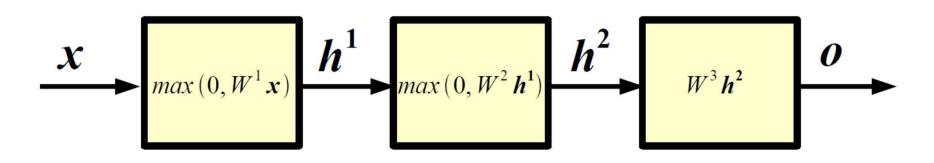
Question: what class of functions shall we consider to map the input into the output?

Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? What are the "simpler" functions? What is the interpretation?

Answer: later...

Neural Networks: example



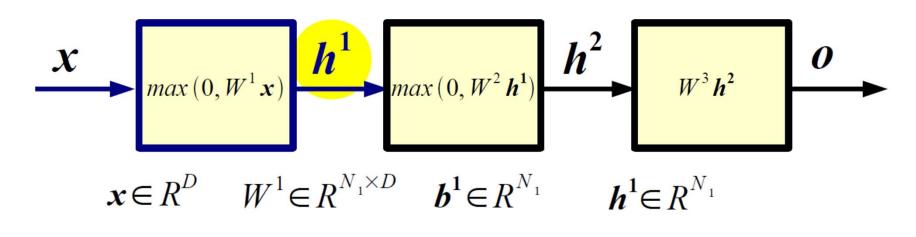
x input h¹ 1-st layer hidden units h² 2-nd layer hidden units o output

Example of a 2 hidden layer neural network (or 4 layer network, counting also input and output)

Forward Propagation

Forward propagation is the process of computing the output of the network given its input

Forward Propagation

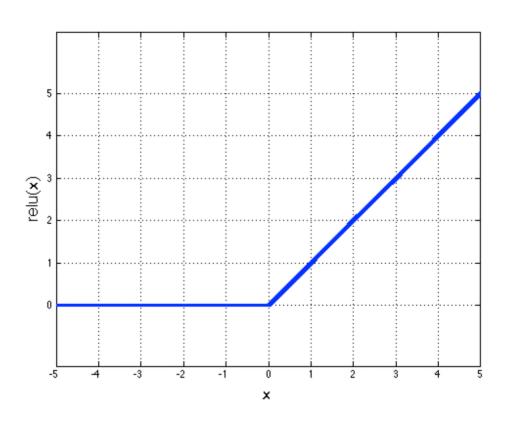


$$h^1 = max(0, W^1 x + b^1)$$

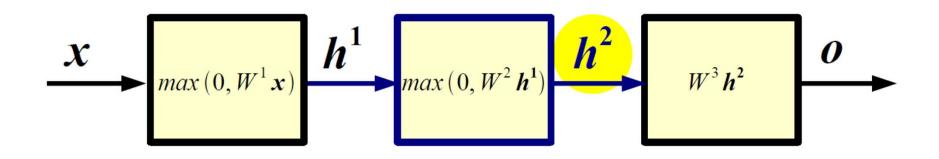
 W^1 1st layer weight matrix or weights b^1 1st layer biases

- The non-linearity u=max(0,v) is called ReLU in the DL literature.
- Each output hidden unit takes as input all the units at the previous layer: each such layer is called "fully connected"

Rectified Linear Unit (ReLU)



Forward Propagation

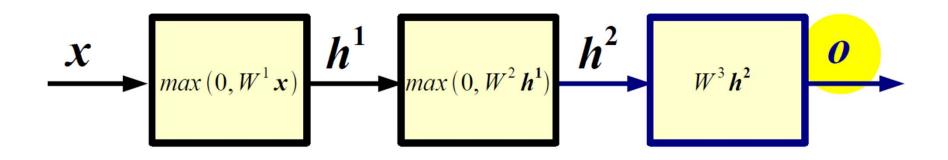


$$h^1 \in R^{N_1} \quad W^2 \in R^{N_2 \times N_1} \quad b^2 \in R^{N_2} \quad h^2 \in R^{N_2}$$

$$h^2 = max(0, W^2 h^1 + b^2)$$

 W^2 2nd layer weight matrix or weights b^2 2nd layer biases

Forward Propagation

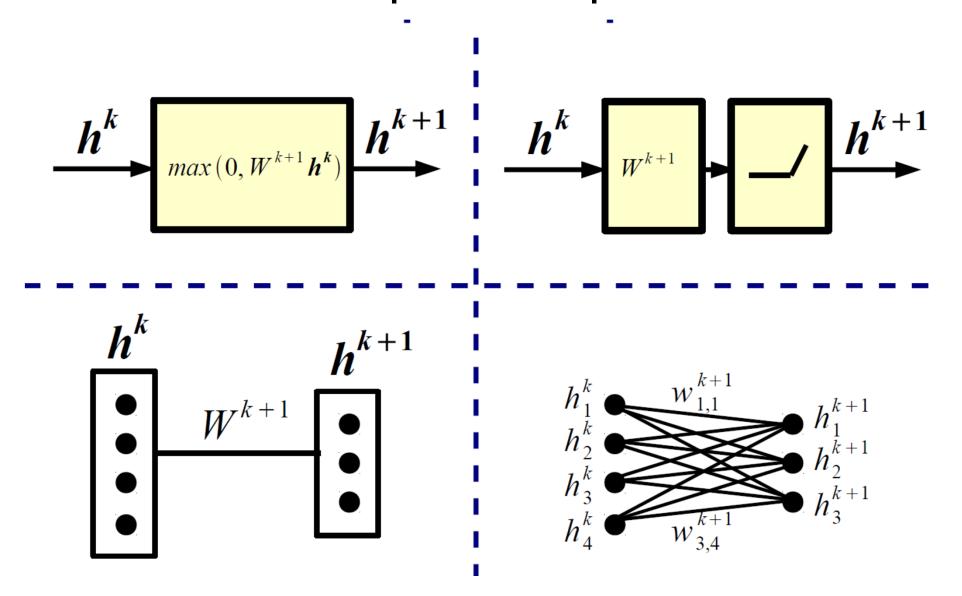


$$h^2 \in R^{N_2} \ W^3 \in R^{N_3 \times N_2} \ b^3 \in R^{N_3} \ o \in R^{N_3}$$

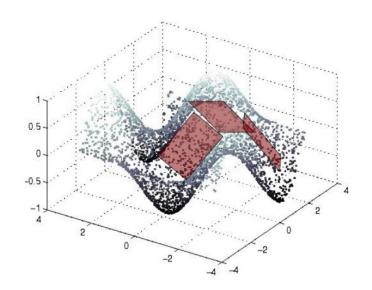
$$o = max(0, W^3 h^2 + b^3)$$

 W^3 3rd layer weight matrix or weights b^3 3rd layer biases

Alternative Graphical Representations

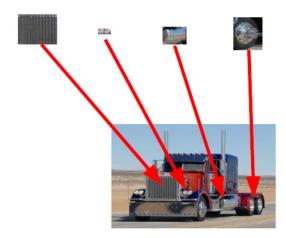


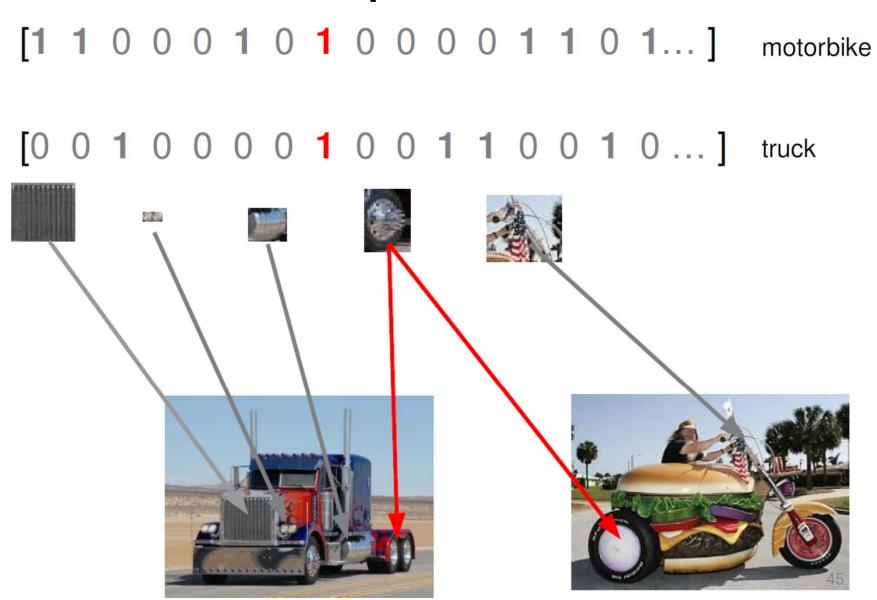
- Question: Why can't the mapping between layers be linear?
- Answer: Because composition of linear functions is a linear function. Neural network would reduce to (1 layer) logistic regression.
- Question: What do ReLU layers accomplish?
- Answer: Piece-wise linear tiling: mapping is locally linear.

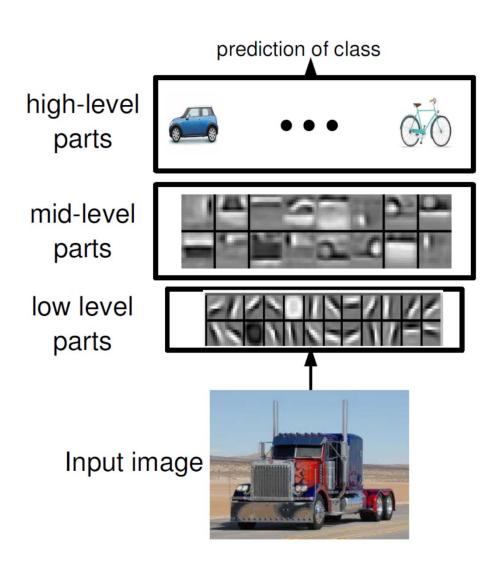


- Question: Why do we need many layers?
- Answer: When input has hierarchical structure, the use of a hierarchical architecture is potentially more efficient because intermediate computations can be re-used. DL architectures are efficient also because they use distributed representations which are shared across classes.

[0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 ...] truck feature







- Distributed representations
- Feature sharing
- Compositionality

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature

detector.

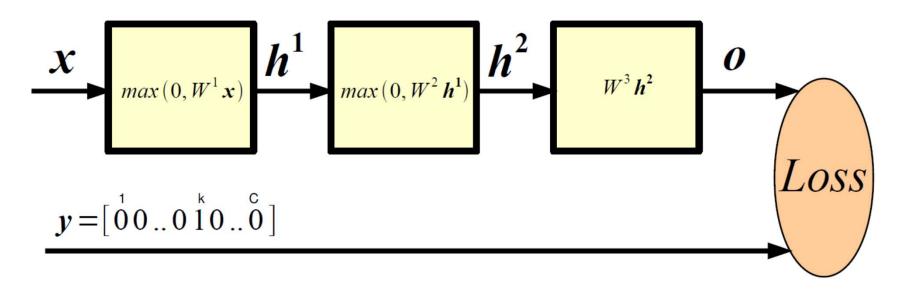
Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are the answer. In general, the wider and the deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?

Answer: Weight matrices and biases are learned. First, we need to define a measure of quality of the current mapping. Then, we need to define a procedure to adjust the parameters.

How Good is a Network



Probability of class k given input (softmax):

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_{j=1}^{C} e^{o_j}}$$

 (Per-sample) Loss; e.g., negative log-likelihood (good for classification of small number of classes):

$$L(\mathbf{x}, y; \boldsymbol{\theta}) = -\sum_{j} y_{j} \log p(c_{j}|\mathbf{x})$$

Training

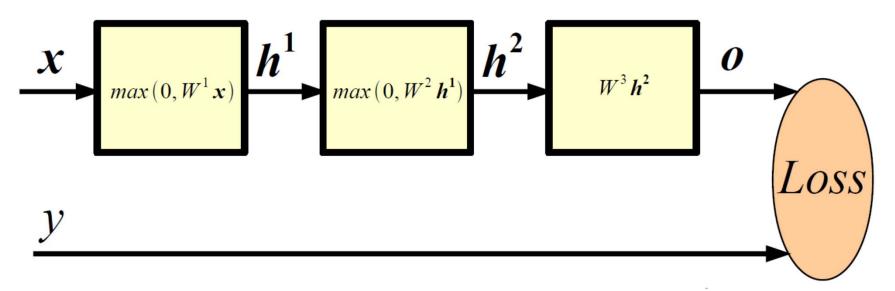
 Learning consists of minimizing the loss (plus some regularization term) w.r.t. parameters over the whole training set.

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} \sum_{n=1}^{P} L(\boldsymbol{x}^n, y^n; \boldsymbol{\theta})$$

Question: How to minimize a complicated function of the parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the procedure to compute gradients of the loss w.r.t. parameters in a multi-layer neural network.

Key Idea: Wiggle to Decrease Loss



- Let's say we want to decrease the loss by adjusting W¹_{i,j}.
- We could consider a very small ε=1e-6 and compute:

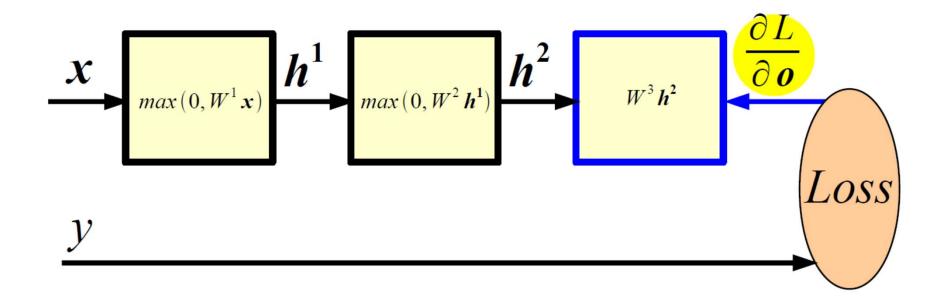
$$L(\boldsymbol{x}, y; \boldsymbol{\theta})$$

 $L(\boldsymbol{x}, y; \boldsymbol{\theta} \setminus W_{i,j}^{1}, W_{i,j}^{1} + \epsilon)$

Then update:

$$W_{i,j}^1 \leftarrow W_{i,j}^1 + \epsilon \operatorname{sgn}(L(\mathbf{x}, y; \boldsymbol{\theta}) - L(\mathbf{x}, y; \boldsymbol{\theta} \setminus W_{i,j}^1, W_{i,j}^1 + \epsilon))$$

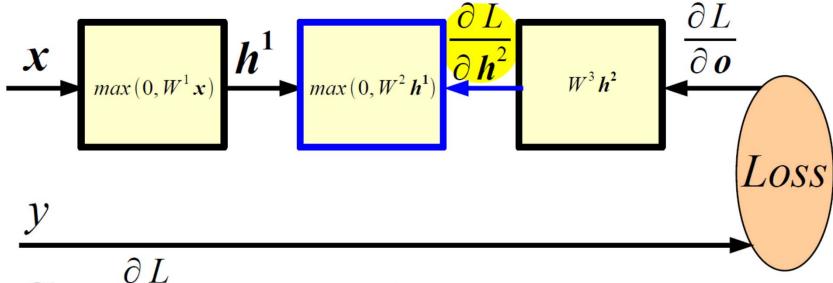
Backward Propagation



$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial W^3}$$

$$\frac{\partial L}{\partial \boldsymbol{h}^2} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial \boldsymbol{h}^2}$$

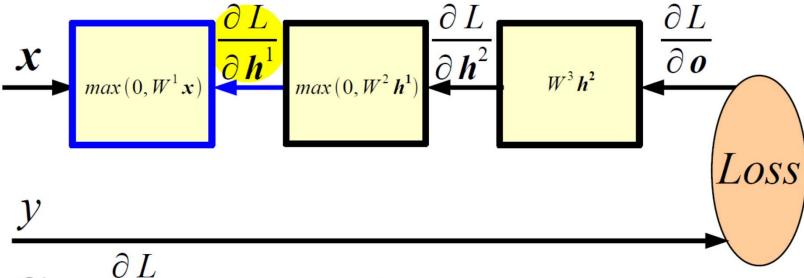
Backward Propagation



Given $\frac{\partial L}{\partial \mathbf{h}^2}$ we can compute now:

$$\frac{\partial L}{\partial W^2} = \frac{\partial L}{\partial \boldsymbol{h}^2} \frac{\partial \boldsymbol{h}^2}{\partial W^2} \qquad \frac{\partial L}{\partial \boldsymbol{h}^1} = \frac{\partial L}{\partial \boldsymbol{h}^2} \frac{\partial \boldsymbol{h}^2}{\partial \boldsymbol{h}^1}$$

Backward Propagation



Given $\frac{\partial L}{\partial \mathbf{h}^1}$ we can compute now:

$$\frac{\partial L}{\partial W^{1}} = \frac{\partial L}{\partial \boldsymbol{h}^{1}} \frac{\partial \boldsymbol{h}^{1}}{\partial W^{1}}$$

Optimization

Stochastic Gradient Descent

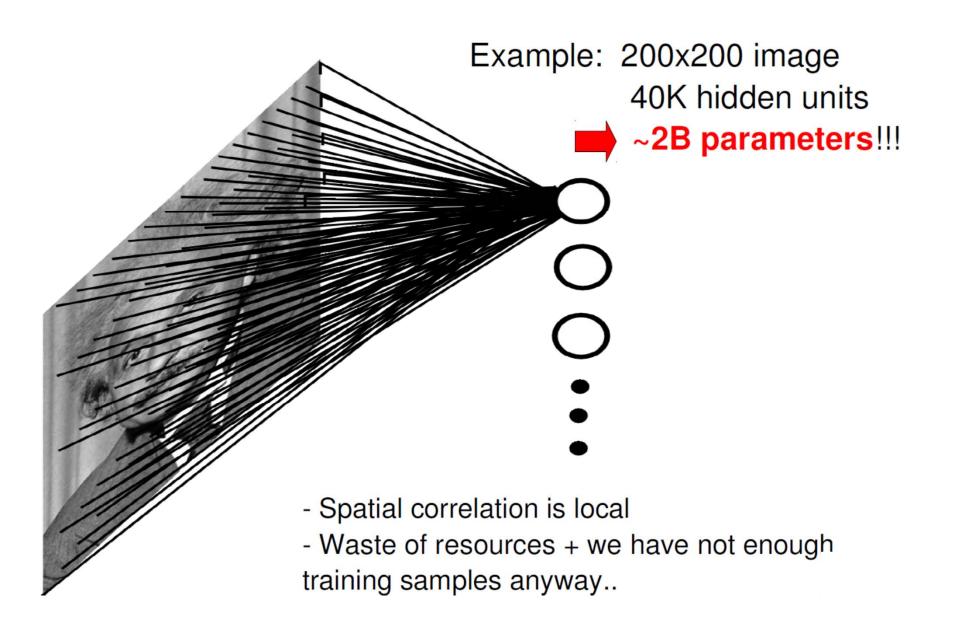
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \frac{\partial L}{\partial \boldsymbol{\theta}}, \eta \in (0, 1)$$

Or one of its many variants

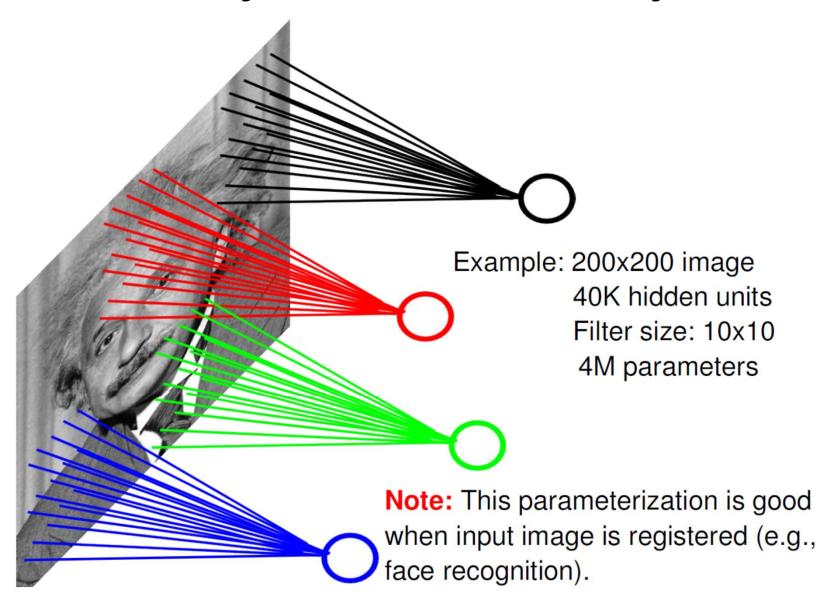
Convolutional Neural Networks

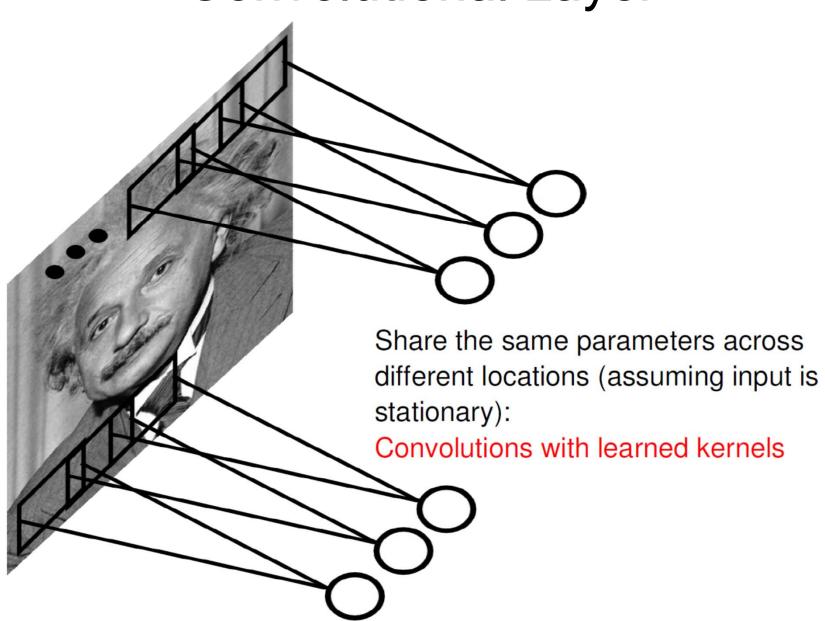
Marc'Aurelio Ranzato

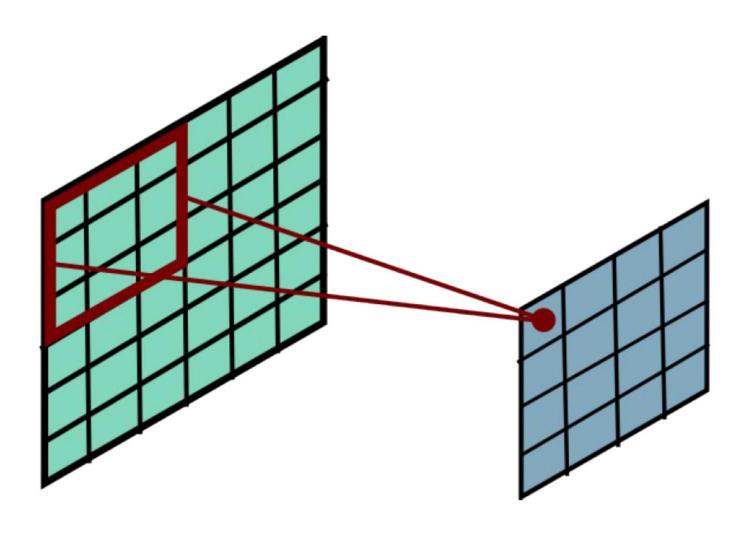
Fully Connected Layer

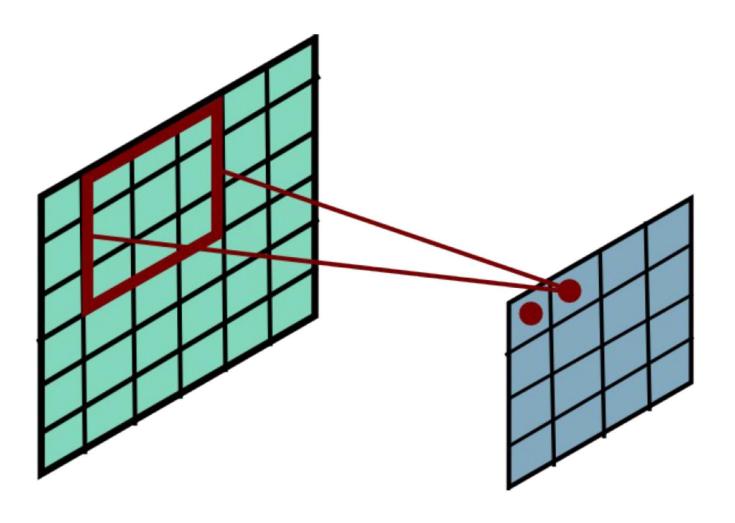


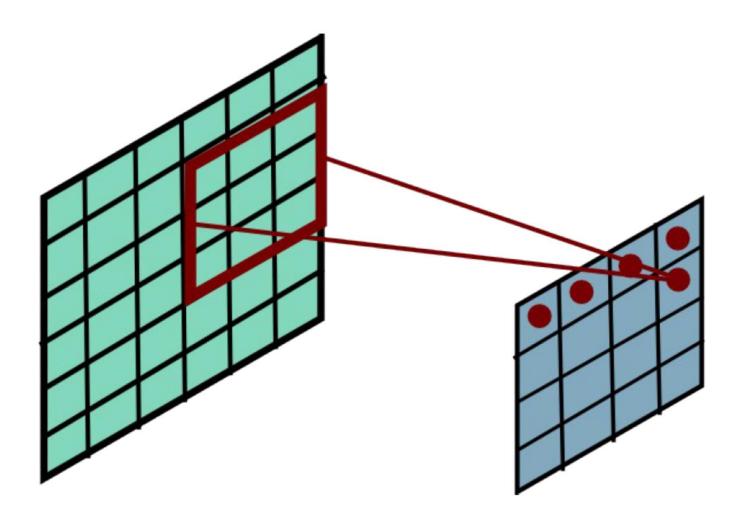
Locally Connected Layer

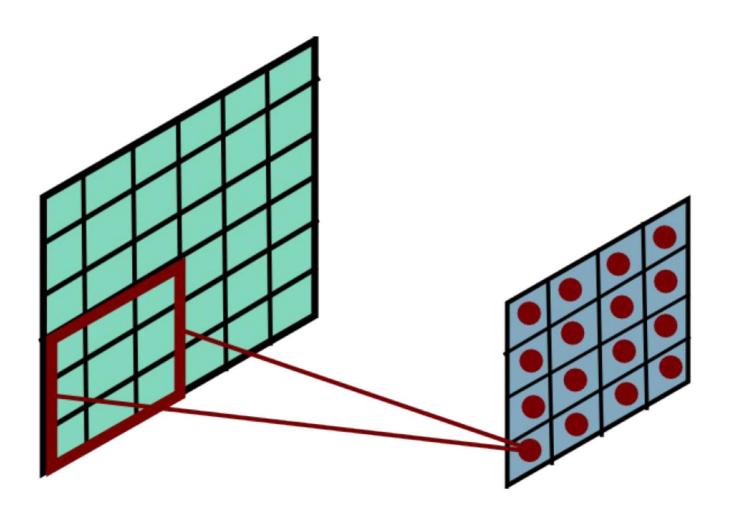


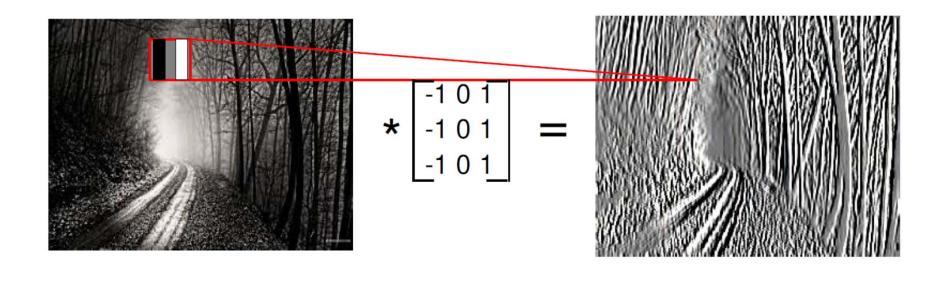


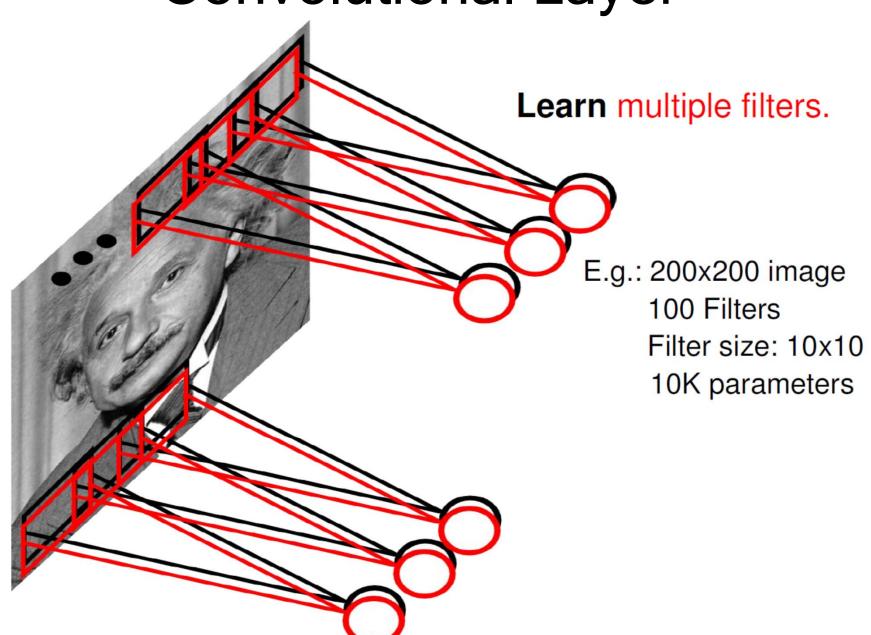


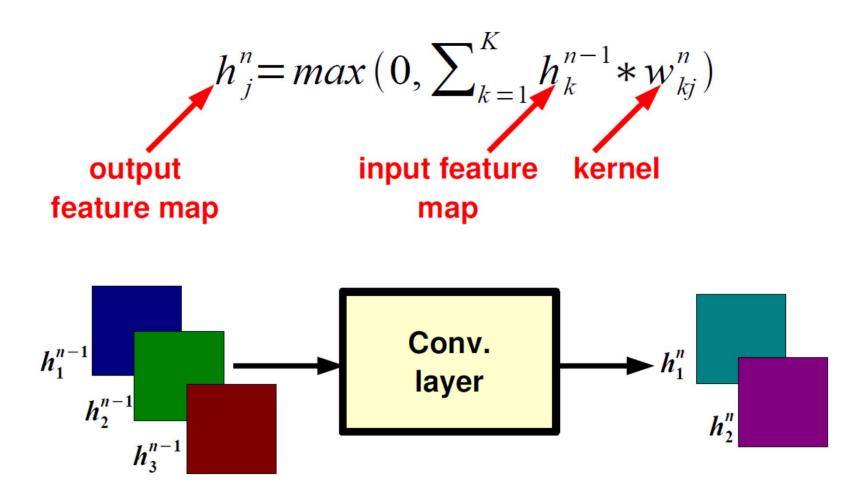


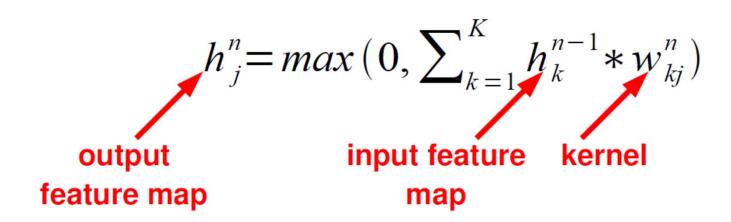


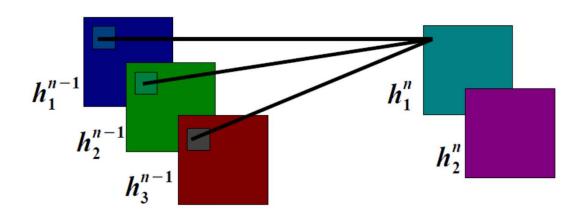


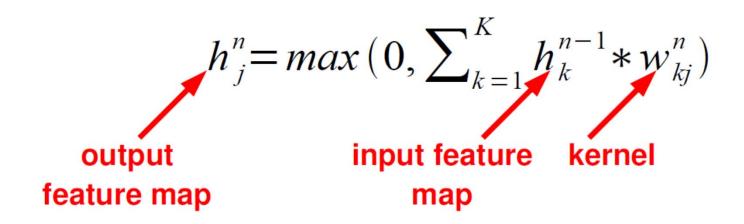


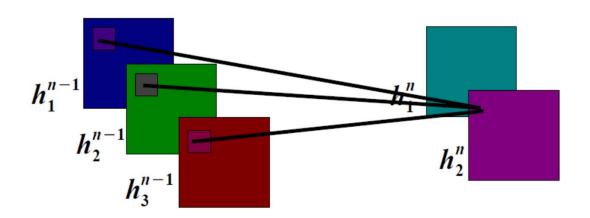












Question: What is the size of the output? What's the computational cost?

Answer: It is proportional to the number of filters and depends on the stride. If kernels have size K×K, input has size D×D, stride is 1, and there are M input feature maps and N output feature maps then:

- the input has size M×D×D
- the output has size N× (D-K+1) ×(D-K+1)
- the kernels have M×N×K×K coefficients (which have to be learned)
- cost: $M \times K \times K \times N \times (D-K+1) \times (D-K+1)$

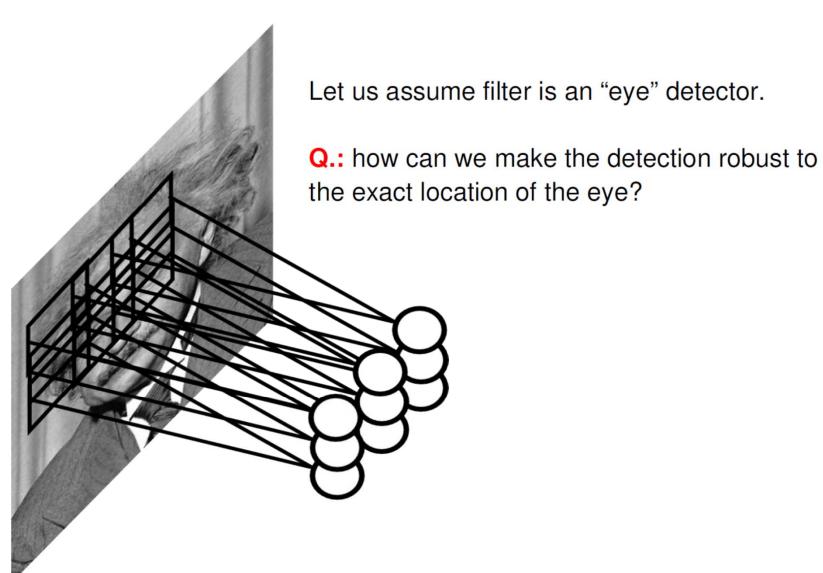
Question: How many feature maps? What's the size of the filters?

Answer: Usually, there are more output feature maps than input feature maps. Convolutional layers can increase the number of hidden units by big factors (and are expensive to compute). The size of the filters has to match the size/scale of the patterns we want to detect (task dependent).

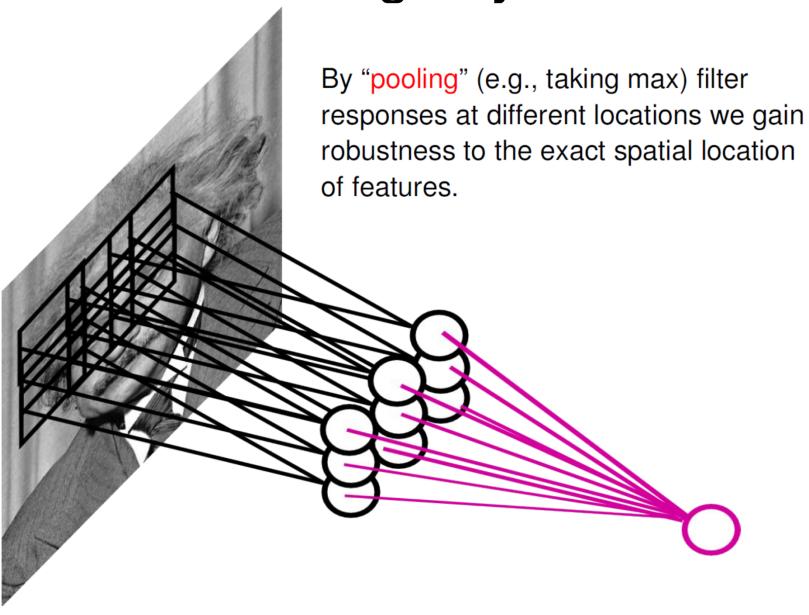
Key Ideas

- A standard neural net applied to images:
 - scales quadratically with the size of the input
 - does not leverage stationarity
- Solution:
 - connect each hidden unit to a small patch of the input
 - share the weight across space
- This is called: convolutional layer
- A network with convolutional layers is called convolutional network

Pooling Layer



Pooling Layer



Pooling Layer

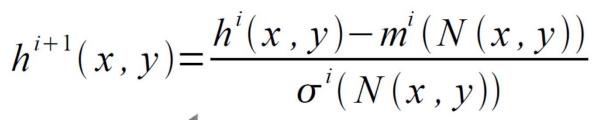
Question: What is the size of the output? What's the computational cost?

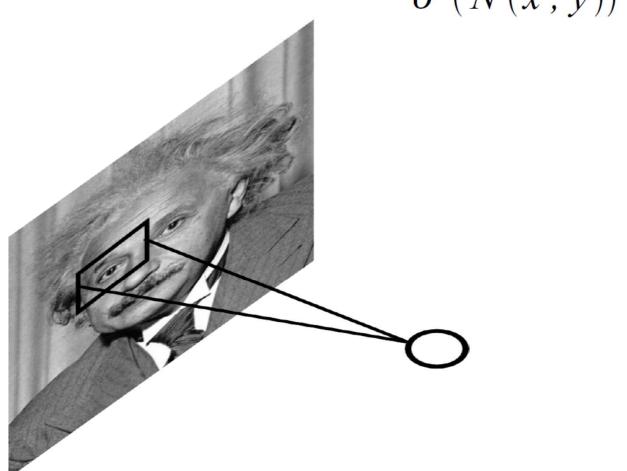
Answer: The size of the output depends on the stride between the pools. For instance, if pools do not overlap and have size K×K, and the input has size D×D with M input feature maps, then:

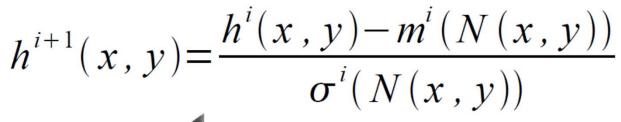
- output is $M@(D/K) \times (D/K)$
- the computational cost is proportional to the size of the input (negligible compared to a convolutional layer)

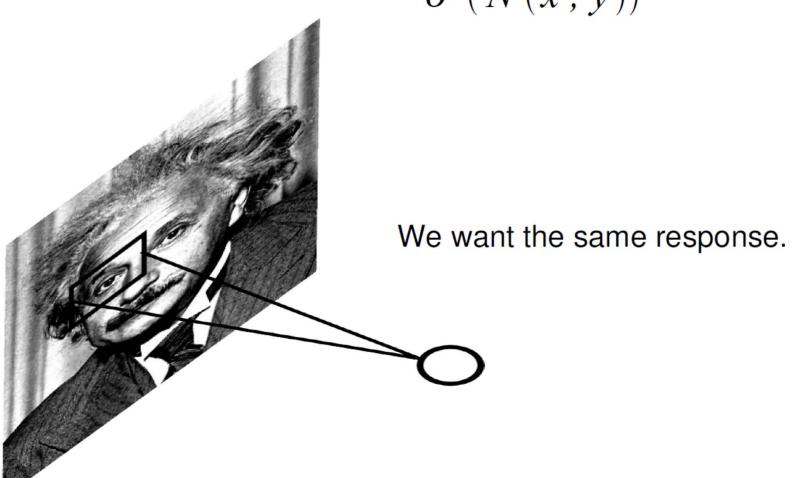
Question: How should I set the size of the pools?

Answer: It depends on how much "invariant" or robust to distortions we want the representation to be. It is best to pool slowly (via a few stacks of conv-pooling layers).

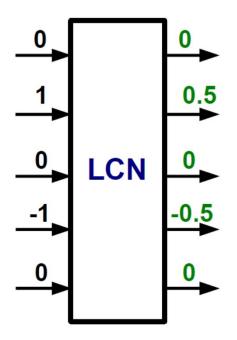




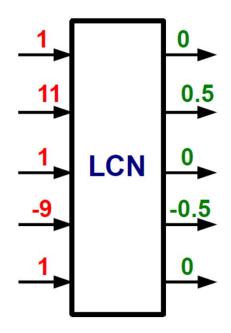




$$h_{i+1,x,y} = \frac{h_{i,x,y} - m_{i,N(x,y)}}{\sigma_{i,N(x,y)}}$$

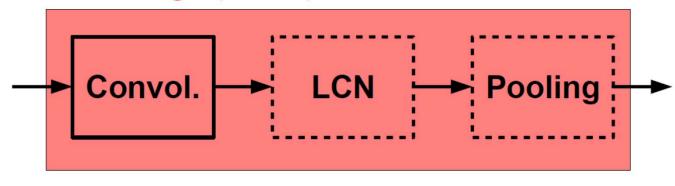


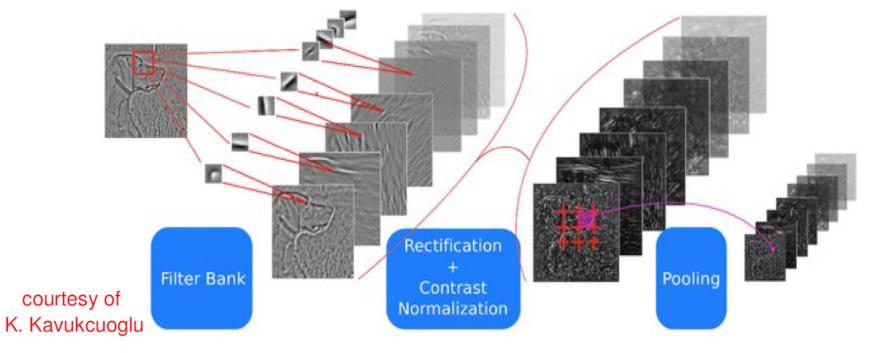
$$h_{i+1,x,y} = \frac{h_{i,x,y} - m_{i,N(x,y)}}{\sigma_{i,N(x,y)}}$$



ConvNets: Typical Stage

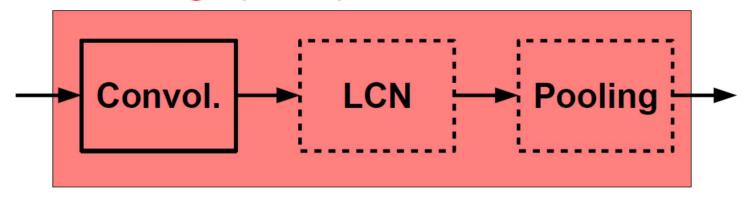
One stage (zoom)



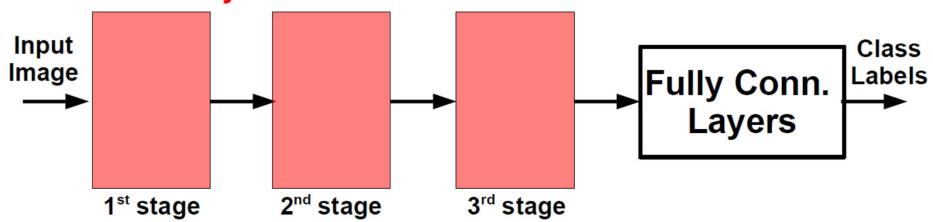


ConvNets: Typical Architecture

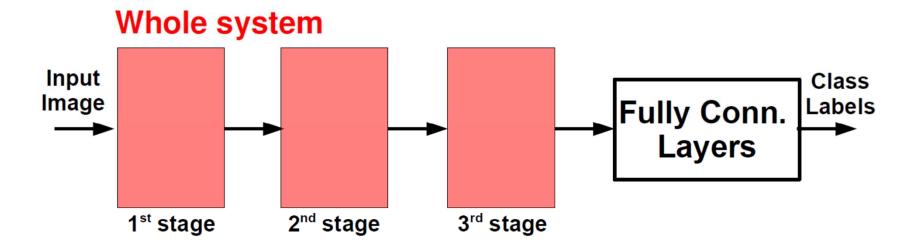
One stage (zoom)



Whole system



ConvNets: Typical Architecture

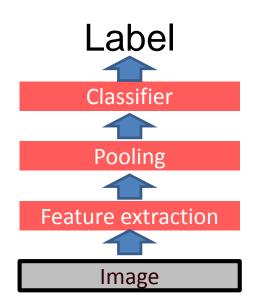


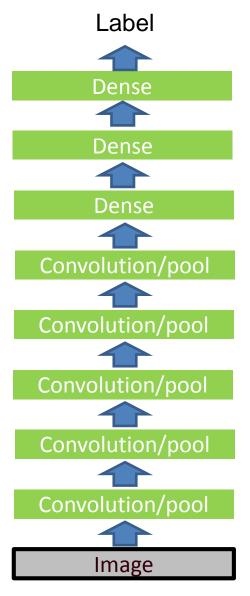
Conceptually similar to:

SIFT → k-means → Pyramid Pooling → SVM

Engineered vs. learned features

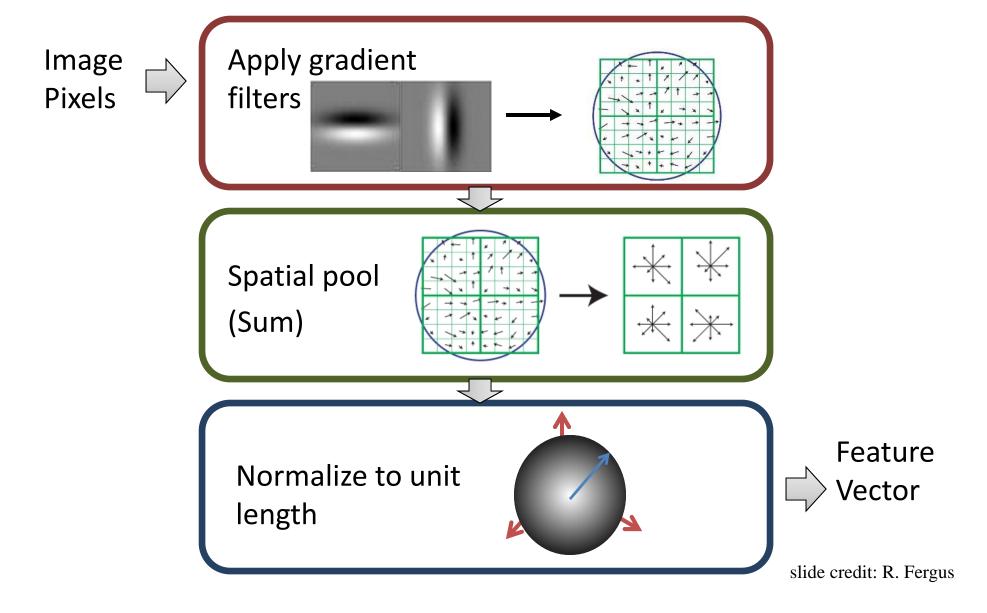
Convolutional filters are trained in a supervised manner by back-propagating classification error





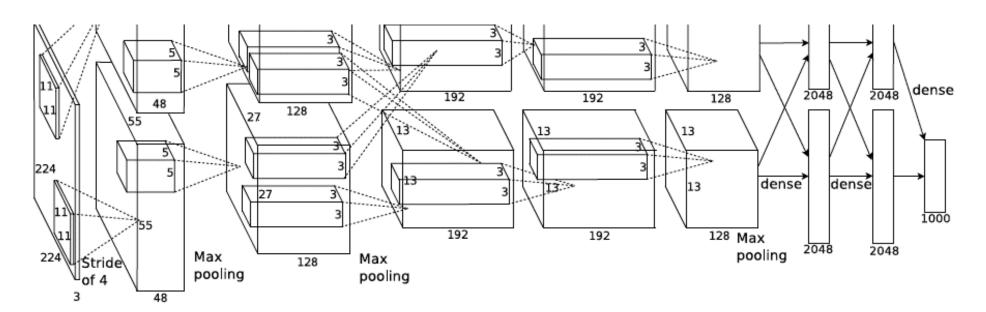
slide credit: S. Lazebnik

SIFT Descriptor

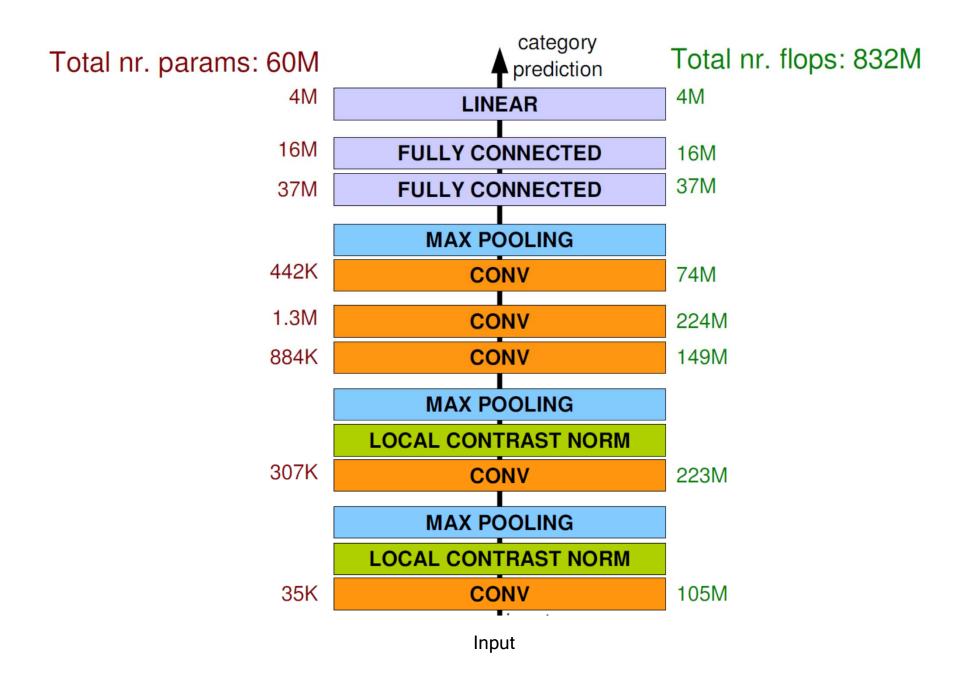


AlexNet

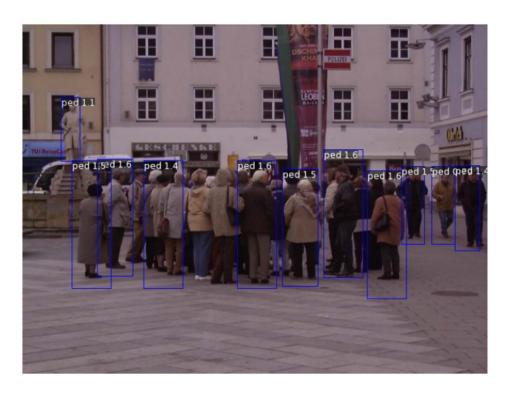
- Similar framework to LeCun'98 but:
 - Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
 - More data (10⁶ vs. 10³ images)
 - GPU implementation (50x speedup over CPU)
 - Trained on two GPUs for a week



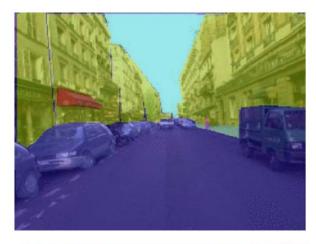
A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012

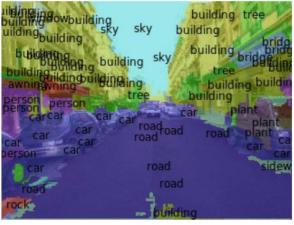


Pedestrian detection

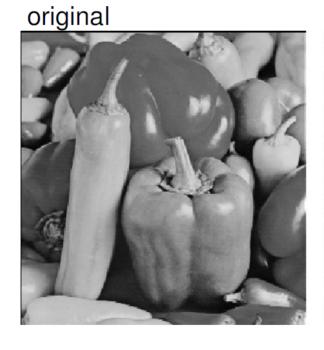


Scene Parsing



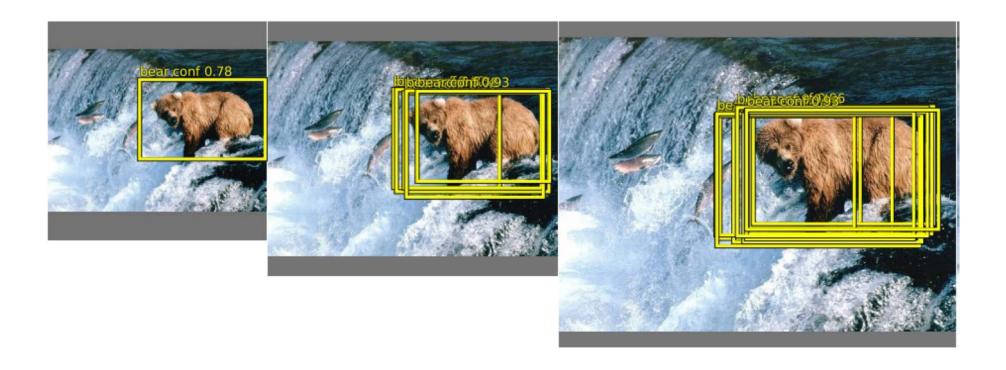


Denoising

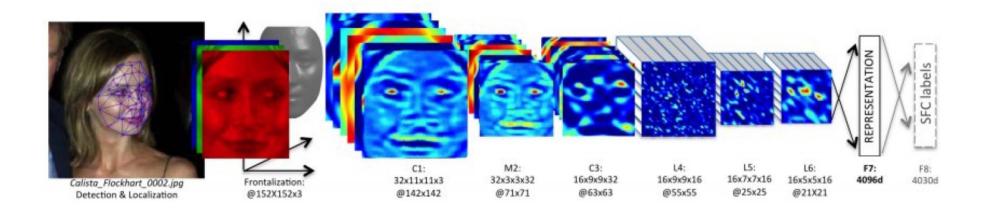


denoised

Object Detection



Face Verification and Identification (DeepFace)



• Regression (DeepPose)

