
CS 558: Computer Vision
12th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1

Overview

• Deep Learning for Computer Vision

– Based on slides by M. Ranzato (mainly), S.
Lazebnik, R. Fergus and Q. Zhang

Natural Neurons

• Human recognition of digits
– visual cortices
– neuron interaction

Recognizing Handwritten Digits

• How to describe a digit to a computer
– "a 9 has a loop at the top, and a vertical stroke in
the bottom right“

– Algorithmically difficult to describe various 9s

Perceptrons

• Perceptrons
• 1950s ~ 1960s, Frank Rosenblatt, inspired by earlier
work by Warren McCulloch and Walter Pitts

• Standard model of artificial neurons

Binary Perceptrons

• Inputs
• Multiple binary inputs

• Parameters
• Thresholds & weights

• Outputs
• Thresholded weighted

linear combination

Layered Perceptrons

• Layered, complex model
• 1st layer, 2nd layer of
perceptrons

• Perceptron rule
• Weights, thresholds

• Similarity to logical
functions (NAND)

Sigmoid Neurons

• Sigmoid neurons
• Stability

• Small perturbation, small
output change

• Continuous inputs
• Continuous outputs
• Soft thresholds

Output Functions

• Sigmoid neurons
• Output

• Sigmoid vs conventional
thresholds

Smoothness & Differentiability

• Perturbations and
Derivatives
• Continuous function
• Differentiable

• Layers
• Input layers, output layers,
hidden layers

Layer Structure Design

• Design of hidden layer
• Heuristic rules
• Number of hidden layers vs.
computational resources

• Feedforward network
• No loops involved

Cost Function & Optimization

• Learning with gradient descent
• Cost function
• Euclidean loss
• Non‐negative, smooth,
differentiable

Cost Function & Optimization

• Gradient Descent

• Gradient vector

Cost Function & Optimization

• Extension to multiple dimension
• m variables
• Small change in variable
• Small change in cost

Neural Nets for Vision

Based on Tutorials at CVPR 2012
and 2014 by

Marc’Aurelio Ranzato

Building an Object Recognition System

IDEA: Use data to optimize features for the
given task

Building an Object Recognition System

What we want: Use parameterized function such that
a) features are computed efficiently
b) features can be trained efficiently

Building an Object Recognition System

• Everything becomes adaptive
• No distinction between feature extractor and classifier
• Big non-linear system trained from raw pixels to labels

Building an Object Recognition System

Q: How can we build such a highly non-linear system?
A: By combining simple building blocks we can make
more and more complex systems

Building a Complicated Function

• Function composition is
at the core of deep
learning methods

• Each “simple function”
will have parameters
subject to training

Building a Complicated Function

• Function composition is at the core of
deep learning methods

• Each “simple function” will have
parameters subject to training

Implementing a Complicated Function

Intuition Behind Deep Neural Nets

Intuition Behind Deep Neural Nets

Each black box can have trainable parameters. Their
composition makes a highly non-linear system.

Intuition Behind Deep Neural Nets

System produces hierarchy of features

Intuition Behind Deep Neural Nets

Intuition Behind Deep Neural Nets

Intuition Behind Deep Neural Nets

Key Ideas of Neural Nets
IDEA # 1

Learn features from data
IDEA # 2

Use differentiable functions that produce
features efficiently

IDEA # 3
End-to-end learning:

no distinction between feature extractor and
classifier
IDEA # 4

“Deep” architectures:
cascade of simpler non-linear modules

Key Questions

• What is the input-output mapping?

• How are parameters trained?

• How computational expensive is it?

• How well does it work?

Supervised Deep Learning

Marc’Aurelio Ranzato

Supervised Learning
{(xi, yi), i=1... P } training set
xi i-th input training example
yi i-th target label
P number of training examples

• Goal: predict the target label of unseen inputs

Supervised Learning Examples

Supervised Deep Learning

Neural Networks

Assumptions (for the next few slides):
• The input image is vectorized (disregard the

spatial layout of pixels)
• The target label is discrete (classification)

Question: what class of functions shall we consider
to map the input into the output?
Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination?
What are the “simpler” functions? What is the
interpretation?
Answer: later...

Neural Networks: example

x input
h1 1-st layer hidden units
h2 2-nd layer hidden units
o output

Example of a 2 hidden layer neural network (or 4
layer network, counting also input and output)

Forward Propagation

Forward propagation is the process of
computing the output of the network given its
input

Forward Propagation

W 1 1st layer weight matrix or weights
b 1 1st layer biases

• The non-linearity u=max(0,v) is called ReLU in the DL literature.
• Each output hidden unit takes as input all the units at the

previous layer: each such layer is called “fully connected”

Rectified Linear Unit (ReLU)

39

Forward Propagation

W 2 2nd layer weight matrix or weights
b 2 2nd layer biases

Forward Propagation

W 3 3rd layer weight matrix or weights
b 3 3rd layer biases

Alternative Graphical Representations

Interpretation
• Question: Why can't the mapping between layers be

linear?
• Answer: Because composition of linear functions is a

linear function. Neural network would reduce to (1 layer)
logistic regression.

• Question: What do ReLU layers accomplish?
• Answer: Piece-wise linear tiling: mapping is locally linear.

Interpretation
• Question: Why do we need many layers?
• Answer: When input has hierarchical structure, the use

of a hierarchical architecture is potentially more efficient
because intermediate computations can be re-used. DL
architectures are efficient also because they use
distributed representations which are shared across
classes.

Interpretation

45

Interpretation

• Distributed
representations

• Feature sharing
• Compositionality

46

Interpretation
Question: What does a hidden unit do?
Answer: It can be thought of as a classifier or feature
detector.

Question: How many layers? How many hidden units?
Answer: Cross-validation or hyper-parameter search
methods are the answer. In general, the wider and the
deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?
Answer: Weight matrices and biases are learned. First, we
need to define a measure of quality of the current
mapping. Then, we need to define a procedure to adjust
the parameters.

47

How Good is a Network

• Probability of class k given input (softmax):

• (Per-sample) Loss; e.g., negative log-likelihood (good for
classification of small number of classes):

Training
• Learning consists of minimizing the loss (plus some

regularization term) w.r.t. parameters over the whole
training set.

Question: How to minimize a complicated function of the
parameters?
Answer: Chain rule, a.k.a. Backpropagation! That is the
procedure to compute gradients of the loss w.r.t.
parameters in a multi-layer neural network.

49

Key Idea: Wiggle to Decrease Loss

• Let's say we want to decrease the loss by adjusting W1
i,j.

• We could consider a very small ϵ=1e-6 and compute:

• Then update:

Backward Propagation

51

Backward Propagation

52

Backward Propagation

53

Optimization

Stochastic Gradient Descent

Or one of its many variants

54

Convolutional Neural
Networks

Marc’Aurelio Ranzato

55

Fully Connected Layer

Locally Connected Layer

Convolutional Layer

Convolutional Layer

59

Convolutional Layer

60

Convolutional Layer

61

Convolutional Layer

62

Convolutional Layer

63

Convolutional Layer

Convolutional Layer

65

Convolutional Layer

66

Convolutional Layer

67

Convolutional Layer
Question: What is the size of the output? What's the computational
cost?
Answer: It is proportional to the number of filters and depends on
the stride. If kernels have size K×K, input has size D×D, stride is 1,
and there are M input feature maps and N output feature maps then:
- the input has size M×D×D
- the output has size N× (D-K+1) ×(D-K+1)
- the kernels have M×N×K×K coefficients (which have to be learned)
- cost: M×K×K×N×(D-K+1)×(D-K+1)

Question: How many feature maps? What's the size of the filters?
Answer: Usually, there are more output feature maps than input
feature maps. Convolutional layers can increase the number of
hidden units by big factors (and are expensive to compute). The
size of the filters has to match the size/scale of the patterns we want
to detect (task dependent).

68

Key Ideas
• A standard neural net applied to images:

– scales quadratically with the size of the input
– does not leverage stationarity

• Solution:
– connect each hidden unit to a small patch of the

input
– share the weight across space

• This is called: convolutional layer
• A network with convolutional layers is called

convolutional network

69

Pooling Layer

Pooling Layer

Pooling Layer
Question: What is the size of the output? What's the
computational cost?
Answer: The size of the output depends on the stride
between the pools. For instance, if pools do not overlap
and have size K×K, and the input has size D×D with M
input feature maps, then:
- output is M@(D/K) ×(D/K)
- the computational cost is proportional to the size of the
input (negligible compared to a convolutional layer)

Question: How should I set the size of the pools?
Answer: It depends on how much “invariant” or robust to
distortions we want the representation to be. It is best to
pool slowly (via a few stacks of conv-pooling layers).

72

Local Contrast Normalization

Local Contrast Normalization

Local Contrast Normalization

75

Local Contrast Normalization

76

ConvNets: Typical Stage

ConvNets: Typical Architecture

78

ConvNets: Typical Architecture

79

Conceptually similar to:
SIFT  k-means  Pyramid Pooling  SVM

Engineered vs. learned features

Image

Feature extractionFeature extraction

PoolingPooling

ClassifierClassifier

Label

Image

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

Convolution/poolConvolution/pool

DenseDense

DenseDense

DenseDense

Label

Convolutional filters are trained in a
supervised manner by back-propagating
classification error

slide credit: S. Lazebnik

SIFT Descriptor

Image
Pixels

Apply gradient
filters

Spatial pool
(Sum)

Normalize to unit
length

Feature
Vector

slide credit: R. Fergus

AlexNet
• Similar framework to LeCun’98 but:

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton,
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Input

Conv Nets: Examples
• Pedestrian detection

84

Conv Nets: Examples
• Scene Parsing

85

Conv Nets: Examples
• Denoising

86

Conv Nets: Examples
• Object Detection

87

Conv Nets: Examples
• Face Verification and Identification (DeepFace)

88

Conv Nets: Examples
• Regression (DeepPose)

