CS 558: Computer Vision
11t Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
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Overview

* Object detection and recognition
— Supervised Classification
— Boosting and face detection
— Pedestrian detection (HOG)
— Part-based models

— Based on slides by K. Grauman, D. Hoiem
and S. Lazebnik



Why recognition?

— Recognition a fundamental part of perception
° e.gd., I’ObO’[S, autonomous agents

— Organize and give access to visual content
« Connect to information
» Detect trends and themes



Posing visual queries
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Finding visually similar objects

I [ ke visual shopping 2714
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My Like List | NewslLetter | Blog

FOR THE HOME

Women's Shoes

Refine by Style

Pumps Sandals

Why is Like.com Different?

Like is a visual shopping engine that
lets you find items by
color, shape and pattern.

Click on | Likeness Search - to get started

Your Search ltem

Which part of the image do you like?
Draw a box on the tem to focus your
zearch on that area.
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Compare Prices  More Details  Save to Likelist
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Shop at Zappos.com
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an easy on the eyes pump features craftsmanship to make it easy
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More Details  Save to Likelist

Shop for more items like this:
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Auto-annotation

President George W Bush makes a
statement in the Fosa Garden whils Sac-
wtary of Defense Donald Romsleld
looks an, Juby 23, 2003, Bumsfald said
the United Staies would mlewse graphic
photographs af the desd sons of Seddam
Hussein to prove they wem killed by
American troops. Photo by Lamy Down-

ing/Reuters

British director Sam Mendes and his
pamner actress Kate Winslet arive at
the London premier of "The Koad w
Perdition”, September 18, 2002, The
films stars Tom Hanks as a Chicago hit
man who has 4 separte family life and
co-stars Panl Mewman and JTude Law,
REUTERS/Dan Chung

[oumbent California Gov., Gray Davis
(news - web sites) leads Republican
challenger Bill Simon by 10 percantage
points — although 17 parcent of vaters
ame still undecided, according to a poll
mlessed Ogtober 22, 202 by the Pub-
lic Paolicy Institute of Califomia. Davis is
shown speaking to mporters after his de-
bare with Simon in Los Angeles, on O,
T Jirn Buymen/Reutars)

T. Berg et al.
Kristen Grauman



Challenges: robustness
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Occlusions Intra-class Viewpoint
appearance

Kristen Grauman



Challenges: robustness

Realistic scenes are crowded, cluttered,
have overlapping objects



Challenges: importance of context

slide credit: Fei-Fei, Fergus & Torralba



Challenges: importance of context




Challenges: complexity

Thousands to millions of pixels in an image
3,000-30,000 human recognizable object categories

30+ degrees of freedom in the pose of articulated
objects (humans)
Billions of images indexed by Google Image Search

About half of the cerebral cortex in primates is
devoted to processing visual information [Felleman
and van Essen 1991]

Kristen Grauman



Challenges: learning with minimal
supervision
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What works most reliably today

* Reading license plates, zip codes, checks

—hboFoO0Oro~
T NWNOoN T HS
o F P O |0—T %N
LM S~ 0GP o
NSNS QNN QT
NN NN Y
v N-SNNXAd~\
NI TN QN

Source: Lana Lazebnik



What works most reliably today

Zip codes, checks

* Reading license plates
* Fingerprint recognition

Source: Lana Lazebnik



What works most reliably today

* Reading license plates, zip codes, checks
* Fingerprint recognition
* Face detection

[Face priority AE] When a bright part of the face is too bright

Canon

Source: Lana Lazebnik



What works most reliably today

Reading license plates, zip codes, checks
Fingerprint recognition
Face detection

Recognition of flat textured objects (CD
covers, book covers, etc.)

Source: Lana Lazebnik



Generic category recognition:
basic framework

 Build/train object model
— Choose a representation

— Learn or fit parameters of model / classifier
* Generate candidates in new image

 Score the candidates

Kristen Grauman



Generic category recognition:
representation choice

Window-based Part-based

Kristen Grauman



Supervised classification

Given a collection of /abeled examples, come up with a
function that will predict the labels of new examples.

“four”
“nine” ﬂ

?
Training examples Novel input

How good is some function we come up with to do the
classification?

Depends on

— Mistakes made

— Cost associated with the mistakes

Kristen Grauman



Supervised classification

« QGiven a collection of /abeled examples, come up with a
function that will predict the labels of new examples.

« Consider the two-class (binary) decision problem
— L(4—9): Loss of classifyinga4 asa 9
— L(9—4): Loss of classifyinga 9 as a 4

* Risk of a classifier sis expected loss:

R(s) =Pr(4 — 9| using s)L(4 — 9)+Pr(9 — 4| using s)L(9 — 4)

« We want to choose a classifier so as to minimize this
total risk

Kristen Grauman



Supervised classification

' Optimal classifier will
minimize total risk.

I
E At decision boundary,

———— 01ther choice of label

yields same expected

|
Feature value X
loss.

If we choose class “four” at boundary, expected loss is:
= P(classis9|x) L(9 —> 4)+ P(classis4|x)L(4 —> 4)

If we choose class “nine” at boundary, expected loss is:
= P(classis4|x) L(4 —9)

Kristen Grauman



Supervised classification

' Optimal classifier will
minimize total risk.

I
H E At decision boundary,

———— 01ther choice of label

yields same expected

|
Feature value X
loss.

So, best decision boundary is at point X where
P(classis9|x) L(9 —> 4) =P(classis4|x)L(4 —9)

To classify a new point, choose class with lowest expected loss;
l.e., choose “four” if

P4 |x)L(4—>9)> P9 |x)L(9— 4)

Kristen Grauman



: Supervised classification

Optimal classifier will
minimize total risk.

At decision boundary,
either choice of label

yields same expected

loss.

So, best decision boundary is at point X where
P(classis9|x) L(9 > 4)=P(classis4|x)L(4 —9)

|
Feature value X

To classify a new point, choose class with lowest expected loss;
l.e., choose “four” if

P(A|X)L(4 > 9) 3 P(9]X)[.(9 — 4)

How to evaluate these probabilities?

Kristen Grauman



Example: learning skin colors

 We can represent a class-conditional density using a
histogram (a “non-parametric” distribution)

Percentage of skin pixels
in each bin

P(x|skin)

Feature x = Hue

Feature x = Hue

Kristen Grauman



Example: learning skin colors

 We can represent a class-conditional density using a
histogram (a “non-parametric” distribution)

P(x|skin)

Feature x = Hue

Now we get a new image, and P(x|not skin)
want to label each pixel as skin

or non-skKin.

What’s the probability we care
about to do skin detection?

Feature x = Hue

Kristen Grauman



Bayes rule

posterior IikeAIihood prior
| | (P(x | Skinﬁl-ﬁ’(sﬁcins
P(skin| x) =
P(x)

P(skin|x) a P(x|skin)P(skin)

Where does the prior come from?

Why use a prior?



Example: classifying skin pixels

Now for every pixel in a new image, we can
estimate probability that it is generated by skin.

Brighter pixels -
higher probability
of being skin

Classify pixels based on these probabilities
e if p(skin|x) > 6, classify as skin

o if p(skin|x) < 0, classify as not skin

Kristen Grauman



Example: classifying skin pixels

Hisethm &

Figure 12: CAMSHIFT-based face tracker used to play
Quake 2 hands free by inserting control variables into the
mouse queue

Figure 13: CAMSHIFT-based face tracker used to
over a 3D graphic’s model of Hawaii

Using skin color-based face detection and pose estimation as a
video-based interface

Gary Bradski, 1998
Kristen Grauman



Supervised classification

« Want to minimize the expected misclassification

* Two general strategies

— Use the training data to build representative
probability model; separately model class-conditional
densities and priors (generative)

— Directly construct a good decision boundary, model
the posterior (discriminative)



Generic category recognition:
basic framework

 Build/train object model
— Choose a representation

— Learn or fit parameters of model / classifier
* Generate candidates in new image

 Score the candidates



Generic category recognition:
representation choice

Window-based Part-based
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Window-based models
Building an object model
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> grayscale / color histogram
> vector of pixel intensities

Kristen Grauman



Window-based models
Building an object model

e Pixel-based representations sensitive to small shifts

e Color or grayscale-based appearance description can be
sensitive to illumination and intra-class appearance
variation

Kristen Grauman



Window-based models
Building an object model

e Consider edges, contours, and (oriented) intensity
gradients

Kristen Grauman



Window-based models
Building an object model

e Consider edges, contours, and (oriented) intensity
gradients
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e Summarize local distribution of gradients with histogram
> Locally orderless: offers invariance to small shifts and rotations
> Contrast-normalization: try to correct for variable illumination

Kristen Grauman



Window-based models
Building an object model

Given the representation, train a binary classifier

4l N - ) 4 N
Car/non-car =41 B Car/non-car
Classifier Classifier
\ y, R . y,

Yes, car. NoO, not a car.

Kristen Grauman



Generic category recognition:
basic framework

 Build/train object model
— Choose a representation

— Learn or fit parameters of model / classifier
 Generate candidates in new image

e Score the candidates



Window-based models
Generating and scoring candidates
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Window-based object detection: recap

Training:

1. Obtain training data
2. Define features
3. Define classifier

Given new image:

1. Slide window Training examples

2. Score by classifier llll
M, | 4 )

( )
—»| Car/non-car

\’ Classifier
.

Feature
kextractlon Y

.

Kristen Grauman



Classifier

A classifier maps from the feature space to
a label

Derek Hoiem



Different types of classification

« Exemplar-based: transfer category labels from examples
with most similar features
— What similarity function? What parameters?

* Linear classifier: confidence in positive label is a
weighted sum of features
— What are the weights?

* Non-linear classifier: predictions based on more complex
function of features
— What form does the classifier take? Parameters?

* Generative classifier: assign to the label that best
explains the features (makes features most likely)
— What is the probability function and its parameters?

Note: You can always fully design the classifier by hand, but usually this is too

difficult. Typical solution: learn from training examples. Serek Hoiem



One way to think about it...

Training labels dictate that two examples are the same
or different, in some sense

Features and distance measures define visual similarity

Goal of training is to learn feature weights or distance
measures so that visual similarity predicts label similarity

We want the simplest function that is confidently correct

Derek Hoiem



Exemplar-based Models

* Transfer the label(s) of the most similar
training examples

Derek Hoiem



K-nearest neighbor classifier
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Derek Hoiem



1-nearest neighbor

X2

x1

Derek Hoiem



3-nearest neighbor

X
X
X ° % x
(-
e
X2 0
X1

Derek Hoiem



S5-nearest neighbor

X
X
0
X X

Q

0

X2 0

x1

Derek Hoiem



Using K-NN

» Simple, a good classifier to try first

* No training time (unless you want to learn a
distance function)

* With infinite examples, 1-NN provably has
error that is at most twice Bayes optimal error

Derek Hoiem



Discriminative classifier construction

Nearest neighbor

i fo

A @

10® examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

X €31 maps 16@10x10
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LeCun, Bottou, Bengio, Haffner 1998
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Full connection

Support Vector Machines

Guyon, Vapnik
Heisele, Serre, Poggio, 2001,...

Rowley, Baluja, Kanade 1998

Boosting

Viola, Jones 2001, Torralba et al.
2004, Opelt et al. 20086,...

Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar, Hebert
2003

Slide adapted from Antonio Torralba



Boosting Intuition

Weak

Classifier 1 \

Slide credit: Paul Viola



Boosting illustration

Weights
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Boosting illustration
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Boosting illustration
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Boosting illustration

Weak
Classifier 3




Boosting illustration

‘ ‘

Final classifier is ' ‘
a combination of weak -\ --

P i
classifiers




Boosting: training

Initially, weight each training example equally

In each boosting round:

— Find the weak learner that achieves the lowest weighted training error

— Raise weights of training examples misclassified by current weak learner

Compute final classifier as linear combination of all weak
learners (weight of each learner is directly proportional to
its accuracy)

Exact formulas for re-weighting and combining weak
learners depend on the particular boosting scheme (e.g.,
AdaBoost)

Slide credit: Lana Lazebnik



Challenges of face detection

 Sliding window detector must evaluate tens of
thousands of location/scale combinations

* Faces are rare: 0-10 per image
— A megapixel image has ~10° pixels and a
comparable number of candidate face locations
— For computational efficiency, we should try to

spend as little time as possible on the non-face
windows

— To avoid having a false positive in every image,
our false positive rate has to be less than 10



The Viola/Jones Face Detector

« A seminal approach to real-time object detection
* Training is slow, but detection is very fast
+ Key ideas

— Integral images for fast feature evaluation

— Boosting for feature selection

— Alttentional cascade for fast rejection of non-face
windows

P. VViola and M. Jones. Rapid object detection using a boosted cascade of simple
features. CVPR 2001.

P. Viola and M. Jones. Robust real-time face detection. |1JCV 57(2), 2004.




Image Features

“Rectangle filters” M

Value =

Y (pixels in white area) —
Y (pixels in black area)



Fast computation with integral
Images

» The /ntegral iImage computes
a value at each pixel (x, ) that
Is the sum of the pixel values
above and to the left of (x,)),
Inclusive

« This can quickly be computed
In one pass through the image

(X,y)




Computing the integral image




Computing the integral image

i(x,y)

« Cumulative row sum: s(x, y) = s(x-1, y) +i(x, y)
* Integral image: ii(x, y) = ii(x, y=1) + s(x, y)



Computing sum within a rectangle
 Let A,B,C,D be the

values of the integral
Image at the corners of a
rectangle

* Then the sum of original
Image values within the
rectangle can be

computed as:
sum=A-B-C+D

* Only 3 additions are
required for any size of
rectangle!



omputing a rectangle feature

Integral Image
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Feature selection

* For a 24x24 detection region, the number
of possible rectangle features is ~160,000!
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Feature selection

For a 24x24 detection region, the number
of possible rectangle features is ~160,000!
At test time, it Is impractical to evaluate the
entire feature set

Can we create a good classifier using just
a small subset of all possible features?

How to select such a subset?



Boosting

» Boosting combines weak learners into a more accurate
ensemble classifier

« Weak learners based on rectangle filters:

value of rectangle feature

/
1 if > 6
ht (x) — J ﬁ(X) t\
7 0 otherwise >
window

« Ensemble classification function:

Clx) =t 1 if Za (x) > Za poarned

0 otherW|se




Boosting for face detection

 First two features selected by boosting:

This feature combination can yield 100% detection
rate and 50% false positive rate



Boosting for face detection

* A 200-feature classifier can yield 95% detection
rate and a false positive rate of 1in 14084

ROC curve for 200 feature classifier
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Receiver operating characteristic (ROC) curve



Attentional cascade

« We start with simple classifiers which reject
many of the negative sub-windows while
detecting almost all positive sub-windows

» Positive response from the first classifier
triggers the evaluation of a second (more
complex) classifier, and so on

* A negative outcome at any point leads to the
Immediate rejection of the sub-window

T T T
IMAGE e Classifier2 —» FACE
SUB-WINDOW
F
l F l l F

NON-FACE NON-FACE NON-FACE



Attentional cascade

« Chain classifiers that are
progressively more complex

Receiver operating

characteristic

and have lower false positive

0

% False Pos

rates:

100

7

% Detection

50

T T T
IMAGE —» | Classifier2 }—» FACE
SUB-WINDOW
iF )P

F
NON-FACE NON-FACE NON-FACE




Attentional cascade

* The detection rate and the false positive rate of
the cascade are found by multiplying the
respective rates of the individual stages

* A detection rate of 0.9 and a false positive rate
on the order of 10-° can be achieved by a
10-stage cascade if each stage has a detection
rate of 0.99 (0.99° = 0.9) and a false positive
rate of about 0.30 (0.3 = 6x10-)

T T T
IMAGE e Classifier2 —» FACE
SUB-WINDOW
F
l F l l F

NON-FACE NON-FACE NON-FACE



Training the cascade

Set target detection and false positive rates for
each stage

Keep adding features to the current stage until
Its target rates have been met

— Need to lower AdaBoost threshold to maximize
detection
(as opposed to minimizing total classification error)

— Test on a validation set

If the overall false positive rate is not low
enough, then add another stage

Use false positives from current stage as the
negative training examples for the next stage



The implemented system

* Training Data
— 5000 faces

. All frontal, rescaled to —
24x24 pixels

— 300 million non-faces g
« 9500 non-face images =

— Faces are normalized &
e Scale, translation
* Many variations
— Across individuals
— |llumination
— Pose




System performance

Training time: “weeks” on 466 MHz Sun
workstation

38 layers, total of 6061 features

Average of 10 features evaluated per window
on test set

“On a 700 Mhz Pentium Il processor, the
face detector can process a 384 by 288 pixel
image in about .067 seconds”

— 15 Hz

— 15 times faster than previous detector of
comparable accuracy



Output of Face Detector on Test
Images

JUDYBAIS & :




Related detection tasks

B

Facial Feature Localization Profile Detection

M+4.192
b +3.042

Male vs. g R ] p. K ; ; F -1.385
female -\ - | =i _ _




Profile Detection




Profile Features




Summary: Viola/Jones detector

Rectangle features
Integral images for fast computation
Boosting for feature selection

Attentional cascade for fast rejection of
negative windows



Face detection and recognition

“Sally”




Dalal- Trlggs pedestrlan detector

1. Extract fixed-sized (64x128 pixel) window at
each position and scale

2. Compute HOG (histogram of gradient) features
within each window

3. Score the window with a linear SVM classifier

4. Perform non-maxima suppression to remove
overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Tnput Normalize Compute Weighted vote Contrast normalize Collect HOGs Li Person /
Jput o, samma & |- rars'i;nts —= | into spatial & —»| over overlapping  |—| over detection |—= NEArt o non- person
image colour E orientation cells spatial blocks window SVM classification

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Input Normalize

image

colour

—»| samma & |

Compute
oradients

=

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

—

Collect HOG s
over dete ction
window

Linear

SVM

Person /
3= [NON—person

classification

1

* Tested with

— RGB
— LAB

— Grayscale
« Gamma Normalization and Compression

— Square I’OOt} Very slightly better performance vs. no adjustment

— Log

— Slightly better performance vs. grayscale



Input Normalize Compute Weighted vote Contrast normalize Collect HOG s Li
image | o [ | mdients [~ el | oot e | winom " [TV
Works best
110 0|1
centered 110
diagonal
101
uncentered
110
210
1 {80 8]-1 110
cubic-corrected Sobel

Slides by Pete Barnum

Person /

—3= NO0-Person

classification

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Normalize Weighted vote Contrast normalize Collect HOGs . Person /
iIlllllp:I:r gamma & —» C:;Ri[i.alrjlttes —>| into spatial & | —»| over overlapping | —| over detection —» IS_':,EI;: Fl—» non-person
8 colour & orientation cells spatial blocks window classification

1
» Histogram of gradient

orientations

Orientation: 9 bins (for Histograms in 8x8
unsigned angles 0-180)  pixel cells

90
135 45
180 0
225 315
270

— Votes weighted by magnitude

— Bilinear interpolation between
cells

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05




Normalize Weighted vote Contrast normalize Collect HOGs . Person /
iIllllll:luf? gamma & —» g:ﬁﬂﬂtfs —> | into spatial & | —| over overlapping | —>{ over detection [—»| LT non-person
¢ colour orientation cells spatial blocks window SVM classification

1

R-HOG

__4(.‘611}__

Normalize with respect to
surrounding cells in overlapping
blocks with different cell and
block sizes

— Block —

L2 — norm : v — v/\/[[v]]3 + €2

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Normalize
—»| pamma &
colour

Input
image

Compute
eradients

Weighted vote
into spatial &
orientation cells

—

Contrast normalize
over overlapping
spatial blocks

—

Collect HOG s
over dete ction
window

-

Linear
SVM

Person /
3= [NON—person

classification

Slides by Pete Barnum

1

/7

# cells

# orientations

v

# features =15 x 7 x9 x4 =3780

N

# normalizations by
neighboring cells

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Normalize , Weighted vote Contrast normalize Collect HOG's . Person /
.]"1""? —»| pamma & [ [fual:i]il:alrlltti —= | into spatial & | —=| over overlapping  |—3| over detection —» IS_.‘:?:[M — N0l Person
s colour - orientation cells spatial blocks window . classification

Origin
O Z Margin

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Input MNormalize
Image colour

Compute
eradients

Weighted vote
into spatial &
orientation cells

Contrast normalize
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Pedestrian detection with HOG

* Train a pedestrian template using a linear
support vector machine

positive training examples

. - 11 = | -
£ 5y A ' ' L N
[ . F &
1 "L i - [; __|

negative training examples

S

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Pedestrian detection with HOG

« Train a pedestrian template using a linear support vector
machine

« At test time, convolve feature map with template
* Find local maxima of response - apply non-max suppression

* For multi-scale detection, repeat over multiple levels of a
HOG pyramid

HOG feature map Template Detector response map
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Detection examples




Part-based Models



Part-based Models

Define object by collection of parts modeled by
1. Appearance
2. Spatial configuration

o A S
o s | .

i

i =

Scan<E

Slide credit: Rob Fergus



How to model spatial relations?

* One extreme: fixed template



How to model spatial relations?

* Another extreme: bag of words



How to model spatial relations?

» Star-shaped model




How to model spatial relations?
« Star-shaped model




How to model spatial relations?
* Tree-shaped model
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How to model spatial relations?

Many others...
X3 |
C o }éé Q-8

O(N?)®
(xe
a) Constellation b) Star shape ) k-fan (k = 2) Tl Ce
Fergus et al. 03 Leibe et al. ’04, ‘08 Crandall et al. ‘05 Felzenszwalb &
Fei-Fei etal. ‘03 Crandall et al. ‘05 Huttenlocher ‘05

Fergus et al. ’05
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e) Bag of features f) Hierarchy g) Sparse flexible model

Csurka "04 Bouchard & Triggs ‘05 Carneiro & Lowe ‘06
Vasconcelos ‘00

from [Carneiro & Lowe, ECCV’06]



Star and Tree-shaped Models

1. Star-shaped model

— Example: Deformable Parts Model
Felzenswalb et al. 2010

2. Tree-shaped model

— Example: Pictorial structures
Felzenszwalb Huttenlocher 2005




Deformable Part Model (DPM)

Detecti rl-'ﬂ ;
etections
N 2
Egﬁz_%f

Template Visualization

root filters part filters deformation

Felzenszwalb et al. 2008. 2010 coarse resolution finer resolution models



Review: Dalal-Triggs detector

=0.16

Image Window HOG SVM weights (pos/neg) score

1. Extract fixed-sized (64x128 pixel) window at each
position and scale

2. Compute HOG (histogram of gradient) features
within each window

3. Score the window with a linear SVM classifier

Perform non-maxima suppression to remove
overlapping detections with lower scores



Deformable parts model

Root filter models coarse
whole-object appearance

Part filters model finer-
scale appearance of
smaller patches

For each root window, part
positions that maximize
appearance score minus
spatial cost are found

Root filter Part filters Spatial costs

Total score is sum of scores
of each filter and spatial
costs



DPM: computing object score

7 3%\
/ \
. : --

2% . .
I\

model

feature map J feature map at twice the resolution

-

Scores from individual part

Scores from detectors

root detector

response of par filters

With generalized distance
transform, compute the
maximum part score
corresponding to each root
position

response of root filter

transformed responses

" e
+ J*

color encoding of filter
response values

low value high value

combined score of
root locations




DPM: mlxture model

« Each positive
example is modeled
by one of M
detectors

* Intesting, all
detectors are applied
with non-max
suppression




P‘.'l'b(.)n




Improvement over time for HOG-based detectors

Average Precision on PASCAL VOC 2007

0.4 DPM v4 (3 comp., B
left/right flip) DPM v5

0.35 DPM v2
(2 comp.,
0.3 context)

DPM v3
0.25

0.2

DPM v1 (1 component, parts)

0.15

0.1 Dalal-Triggs (1 component, no parts)

0.05
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Tree-shaped model




Pictorial Structures

Part = oriented rectangle

q

D

Spatial model = relative size/orientation

Felzenszwalb and Huttenlocher 2005



Pictorial Structures Model

Appearance likelihood Geometry likelihood



Modeling the Appearance

* Any appearance model could be used
— HOG Templates, etc.
— Here: rectangles fit to background subtracted binary map

« Can train appearance models independently (easy, not
as good) or jointly (more complicated but better)

(L|1,0) (Hp I|l;, u;) H p(!;.fjr'fj))
cE

('!'i.l.‘j‘}

Appearance likelihood Geometry likelihood



Part representation

« Background subtraction




Pictorial structures model

To create multiple likely candidates

« Sample root node, then each node given
parent, until all parts are sampled



Sample poses from
likelihood and
choose best match

KN
z@
!




Results for person matching




Results for person matching
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