
CS 532: 3D Computer Vision
9th-10th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1

Lecture Outline
• Multi-view Stereo part II

– Slides by G. Vogiatzis and L. Zhang
– Paper by A. Collet et al. (2015)

• Introduction to Computational Geometry
• Convex Hulls

– David M. Mount, CMSC 754: Computational
Geometry lecture notes, Department of Computer
Science, University of Maryland, Spring 2012

– Slides by:
• B. Gartner, M. Hoffman and E. Welzl (ETH)
• M. van Kreveld (Utrecht University)
• P. Indyk and J.C. Yang (MIT)

2

Extracting a Surface from
Photo-consistency

• Vogiatzis et al. (PAMI 2007)
• Divide the space in voxels
• Compute the photo-consistency of each voxel

– By robustly combining all pairwise NCC scores

• Problem: find a minimum cost surface that
separates interior from exterior of the object

• Add term that favors large volume, otherwise
solution collapses to a point

3

How to Solve?

4

Graph Cut

5

Minimum Cut

6

Three Equivalent Representations

7

Extracting the Surface
• Marching cubes algorithm can extract

isosurfaces
– Matlab: [tri, pts] = isosurface(V)
– Where V is a binary volume of 0s and 1s

8

Results

9

Results

10

Volumetric Stereo
• Determine occupancy, “color” of points in V
• Slides by L. Zhang

11

Scene Volume
V

Input Images
(Calibrated)

Discrete Formulation: Voxel Coloring
Goal: Assign RGBA values to voxels in V photo-consistent
with images

12

Discretized
Scene Volume

Input Images
(Calibrated)

Complexity and Computability

13

Discretized
Scene Volume

N voxels
C colors

3

All Scenes (CN3
)Photo-Consistent

Scenes

True
Scene

Reconstruction from Silhouettes
(C=2)

• Approach:
• Back-project each silhouette
• Intersect back-projected volumes

14

Binary Images

Volume Intersection

15

Reconstruction Contains the True Scene
• But is generally not the same
• In the limit (all views) we get visual hull

> Complement of all lines that do not intersect S

Voxel-based Algorithm

16

Color voxel black if on silhouette in every image
• for M images, N3 voxels
• Don’t have to search 2N3 possible scenes!

O(?),

Results (Franco and Boyer, PAMI 2009)

17

Properties of Volume Intersection

Pros
– Easy to implement, fast
– Accelerated via octrees

Cons
– No concavities
– Reconstruction is not photo-consistent
– Requires identification of silhouettes

18

Space Carving

19

Space Carving Algorithm

Image 1 Image N

…...

• Initialize to a volume V containing the true scene

• Repeat until convergence

• Choose a voxel on the current surface

• Carve if not photo-consistent
• Project to visible input images

Which Shape do You Get?

20

The Photo Hull is the UNION of all photo-consistent scenes in V
• It is a photo-consistent scene reconstruction
• Tightest possible bound on the true scene

True Scene

V

Photo Hull

V

Results (Kutulakos and Seitz, IJCV 2000)

21

Free-Viewpoint Video

Alvaro Collet, Ming Chuang, Pat Sweeney,
Don Gillett, Dennis Evseev, David Calabrese,

Hugues Hoppe, Adam Kirk, Steve Sullivan
Microsoft Corporation

SIGGRAPH 2015

22

Pipeline

23

Reconstruction

24

PMVS: system by Furukawa and Ponce, we show last week
PSR: Poisson Surface Reconstruction (last slide last week)

Adaptive Level of Detail

25

Keyframe-based Mesh Tracking

26

Synthesized Viewpoints

27

Synthesized Viewpoints

28

Computational
Geometry

29

Computational Geometry

• Subfield of the Design and Analysis of
Algorithms
• Deals with efficient data structures and

algorithms for geometric problems
• Only about 30 years old

30

Surface Reconstruction

• Digitizing 3D objects, such as the Stanford
Bunny

31

Surface Reconstruction

• Step 1: scan the object with a laser
scanner to obtain set of points inR3

32

Surface Reconstruction

• Step 2: create a triangulation to obtain set
of triangles in R3

33

Surface Reconstruction

• Step 3: process the triangulation to obtain
smooth surface in R3

34

Good and Bad Triangulations in R2

35

Good and Bad Triangulations in R2

36

Collision Detection

37

Collision Detection

• Bounding volume heuristic:
– Approximate the objects by simple ones that

enclose them (bounding volumes)
– popular bounding volumes: boxes, spheres,

ellipsoids,...
– if bounding volumes don’t intersect, the

objects don’t intersect, either
– only if bounding volumes intersect, apply

more expensive intersection test(s)

38

Boolean Operations

• Given two shapes, compute their

39

Geometric Basics

Mount – Lecture 21

40

Affine Geometry
• Scalars
• Points
• Free vectors or vectors

– In contrast to linear algebra where there is no
distinction between points and vectors

41

Affine Geometry

• Can easily derive
– Vector subtraction
– Scalar-vector division

• Cannot derive
– Point-scalar multiplication
– Point addition

• We can define affine combination

42
Why?

Convex Combination
• If 0≤a0,a1≤1, then the operation is called convex

combination
• Set of all convex combinations traces out line segment

• Set of all affine combinations of three non-collinear
points generates plane
– Affine span or affine closure

• Set of all convex combinations of three non-collinear
points generates triangle
– Convex closure

43

Euclidean Geometry

• Extension of affine geometry that includes
inner product

• Maps two real vectors (not points) into real
scalar
– Define length of vector as square root of inner

product with itself
– Normalize vector by dividing with its length

44

Distance and Angle

• Distance between points: length of the
vector between them

• Angle between two non-zero vectors,
ranging from 0 to π

45

Orientation of Points

• To make discrete decisions, we would like a
geometric operation on points that is analogous to
the relational operations (<,=,>) with numbers.

• There does not seem to be any natural intrinsic
way to compare two points in d-dimensional
space,

• but there is a natural relation between ordered (d +
1)-tuples of points in d-space, which extends the
notion of binary relations in 1-space:

 orientation

46

Orientation of Points
• Given an ordered triple of points <p,q,r>
• Positive orientation if they define

counterclockwise triangle
• Negative orientation if they define clockwise

triangle
• Zero orientation if they are collinear

47

Orientation of Points

• Formally the sign of the determinant of the points in
homogeneous coordinates

• 1D case: Orient(p,q)=q-p !!
• Orientation is invariant to translation, rotation and scaling

by positive scale
• Sign is reversed by reflection e.g. f(x,y)=(-x,y)

48

Areas and Angles

• The signed area of triangle is ½ of the
determinant
– Can be extended to any dimension
– Volume is equal to determinant divided by d!

• The sine of the signed angle from vector p-
q to r-q
– Can get cosine from inner product

49

Informal Topology

50

Convex Hulls

D. Mount – Lecture 3
M. Van Kreveld slides

51

Polygons

• simple polygon
• polygon with holes
• convex polygon
• non-simple polygon

52

Convex Hulls
• Simple approximation for set of points

– Tighter than bounding box, circle or ellipse

• Convexity: A set K is convex if given any points p, q ∈ K,
the line segment pq is entirely contained within K.

• Convex hull: The convex hull of any set P is the
intersection of all convex sets that contains P, or more
intuitively, the smallest convex set that contains P.
– We will denote it by conv(P).

53

Convex Hull Problem
• Given a set of n points P in the plane, output a

representation of P’s convex hull.
• The simplest representation is a counterclockwise

enumeration of the vertices of the convex hull.
– Although points of P might lie in the interior of an edge

of the boundary of the convex hull, such a point is not
considered a vertex.

– We will assume that the points are in general position,
and in particular, no three are collinear. Then, this
issue does not arise.

• Although the output consists only of the boundary
of the hull, the convex hull includes both the
boundary and interior of the polygon

54

Illustration

55

Developing an Algorithm

• Property: The vertices of the
convex hull are always points
from the input

• Consequently, the edges of the
convex hull connect two points of
the input

• Property: The supporting line of
any convex hull edge has all
input points to one side

56

Slow Algorithm

57
Complexity ?

Incremental Algorithm – Graham’s
Scan

• Incremental, from left to right
• First compute the upper boundary of the

convex hull
– property: on the upper hull, points appear in x-

order
• Main idea: Sort the points from left to right
• Insert the points in this order, and maintain

the upper hull
• Then complete the lower hull

58

Graham’s Scan

59

Graham’s Scan

60

Graham’s Scan

61

Graham’s Scan

62

Graham’s Scan

63

Graham’s Scan

64

Graham’s Scan

65

Graham’s Scan

66

Graham’s Scan

67

Graham’s Scan

68

Graham’s Scan

69

Graham’s Scan

70

Graham’s Scan

71

Graham’s Scan

72

The Algorithm

73

Lower Convex Hull

74

Correctness

• Does the sorted order matter if two or
more points have the same x-coordinate?

• What happens if there are three or more
collinear points, in particular on the convex
hull?

75

Efficiency

• The sorting step takes O(nlogn) time
• Adding a point takes O(1) time for the adding-part.

Removing points takes constant time for each removed
point. If due to an addition, k points are removed, the
step takes O(1+k) time

• Total time:

• if ki points are removed when adding pi

• Since ki = O(n), we get

76

Efficiency

• Sometimes there are global arguments why an algorithm
is more ecient than it seems, at first

• Global argument: each point can be removed only once
from the upper hull

• This gives us the fact:

• Hence:

77

Jarvis’s March Algorithm

• Builds the convex hull in O(nh) time
– h is the number of vertices in the output

• “Gift-wrapping” process
• Analogous to selection sort

78

Jarvis’s March Algorithm
• Start with any one point on the convex hull, e.g. the

lowest point
• Then find the “next” edge on the hull in counterclockwise

order
– Assuming that pk and pk−1 were the last two points added to the

hull, compute the point q that maximizes the angle pk−1pkq
– q can be found in O(n) time

79

Jarvis’s March Algorithm

• If h is o(logn), Jarvis’s march is better than
Graham’s algorithm

• Why?

80

Divide and Conquer
• Analogous to merge sort
• Sort points by x coordinate, then

(1) If |P| ≤ 3, then compute the convex hull by brute force in O(1) time
and return.

(2) Otherwise, partition the point set P into two sets A and B, where A
consists of half the points with the lowest x-coordinates and B consists
of half of the points with the highest x-coordinates.

(3) Recursively compute HA = conv(A) and HB = conv(B).

(4) Merge the two hulls into a common convex hull, H, by computing the
upper and lower tangents for HA and HB and discarding all the points
lying between these two tangents.

81

Divide and Conquer

• LowerTangent(HA,HB) :
(1) Let a be the rightmost point of HA.
(2) Let b be the leftmost point of HB.
(3) While (ab is not a lower tangent for HA and HB) do

(a) While (ab is not a lower tangent to HA) do a ← a.pred (move a
clockwise).
(b) While (ab is not a lower tangent to HB) do b ← b.succ (move b
counterclockwise).

(4) Return ab.

82

Divide and Conquer

• “ab is not a lower tangent to HA” is
equivalent to Orient(b,a,a.pred)≥0
– Vertical gap between two partial convex hulls

needed for this test to hold
– Each vertex is visited at most once

83

Complexity

• Partitioning points is O(n) since they are sorted
according to x

• Returning final results is O(n)
• Tangent computation is O(n)
• Running time is:

• Therefore, T(n) = O(nlogn)

84

Quick Hull
1. Find the points with minimum and maximum x

coordinates, those are bound to be part of the convex
hull.

2. Use the line formed by the two points to divide the set in
two subsets of points, which will be processed
recursively.

3. Add this line in both directions to the convex hull.
4. For each line, find the point with the maximum positive

distance from the line. Form a triangle with this point and
the initial endpoints which replaces the line in the convex
hull.

5. The points lying inside of the triangle cannot be part of the
convex hull and can therefore be ignored in the next
steps.

6. Repeat the previous two steps on the two lines formed by
the triangle (not the initial line).

7. Repeat until no more points are left. The recursion has
come to an end and the points selected constitute the
convex hull.

85

Convex Hulls in 3D

Slides by P. Indyk and J.C. Yang

86

Problem Statement

• Given P, a set of n vertices
in 3D

• Return convex hull of P:
CH(P), i.e. the smallest
polyhedron such that all
elements of P are on or in
the interior of CH(P)

87

Complexity (Spatial)

• Complexity of CH for n points in 3D is O(n)
• ..because the number of edges of a

convex polytope with n vertices is at most
3n-6 and the number of facets is at most
2n-4

• ..because the graph defined by vertices
and edges of a convex polytope is planar

• Euler’s formula: n – ne + nf = 2

88

Randomized Incremental Algorithm

• Initialize the algorithm
• Loop over remaining points

– Add pr to the convex hull of Pr-1 to transform
CH(Pr-1) to CH(Pr)

– [for integer r≥1, let Pr:={p1,…,pr}]

89

Initialization

• Need a CH to start with
• Build a tetrahedron using 4 points in P

– Start with two distinct points in P, say, p1 and p2

– Walk through P to find p3 that does not lie on the
line through p1 and p2

– Find p4 that does not lie on the plane through p1,
p2, p3

– Special case: No such points exist? Planar case!
• Compute random permutation p5,…,pn of the

remaining points

90

Inserting Points into CH

• Add pr to the convex hull of Pr-1 to
transform CH(Pr-1) to CH(Pr)

• Two Cases:
(1) Pr is inside or on the boundary of CH(Pr-1)
– Simple: CH(Pr) = CH(Pr-1)
(2) Pr is outside of CH(Pr-1) – the hard case

91

Case 2: Pr outside CH(Pr-1)

• Determine horizon of pr on CH(Pr-1)
– Closed curve of edges enclosing the visible

region of pr on CH(Pr-1)

92

Visibility

• Consider a plane hf containing a facet f of
CH(Pr-1)

• f is visible from a point p if that point lies in
the open half-space on the other side of hf

93

Rethinking the Horizon

• The boundary of polygon obtained from
projecting CH(Pr-1) onto a plane with pr as
the center of projection

94

CH(Pr-1) to CH(Pr)

• Remove visible facets from CH(Pr-1)
• Found horizon: Closed curve of edges of

CH(Pr-1)
• Form CH(Pr) by connecting each horizon

edge to pr to create a new triangular facet

95

Algorithm So Far

• Initialization
– Form tetrahedron CH(P4) from 4 points in P
– Compute random permutation of remaining pts

• For each remaining point in P
– pr is point to be inserted
– If pr is outside CH(Pr-1) then

• Determine visible region
• Find horizon and remove visible facets
• Add new facets by connecting each horizon edge to pr

• How do we determine the visible region?

96

How to Find the Visible Region

• Naïve approach:
– Test every facet with respect to pr

– O(n2) work

• Trick is to work ahead:
– Maintain information to aid in determining

visible facets.

97

Conflict Lists

• For each facet f maintain
– Pconflict(f) subset of {pr+1, …, pn}
containing points to be inserted that can see f

• For each pt, where t > r, maintain
– Fconflict(pt) containing facets of CH(Pr) visible

from pt

• p and f are in conflict because they cannot
coexist on the same convex hull

98

Conflict Graph G

• Bipartite graph
– points not yet inserted
– facets on CH(Pr)

• Arc for every point-facet conflict
• Conflict sets for a point or facet

can be returned in linear time
• At any step of our algorithm, we

know all conflicts between the
remaining points and facets on the current CH

99

Initializing G

• Initialize G with CH(P4) in linear time
• Walk through P5-n to determine which facet

each point can see

100

f1

f2

p7

p5

p6

Updating G

• Discard visible facets from pr by removing
neighbors of pr in G

• Remove pr from G
• Determine new conflicts

101

f4

Determining New Conflicts
• If pt can see new f, it can see edge e of f
• e on horizon of pr, so e was already in and

visible from pt in CH(Pr-1)
• If pt sees e, it saw either f1 or f2 in CH(Pr-1)
• pt was in Pconflict(f1) or Pconflict(f2) in CH(Pr-1)

102

Determining New Conflicts
• Conflict list of f can be found by testing the

points in the conflict lists of f1 and f2 incident to
the horizon edge e in CH(Pr-1)

103

What About the Other Facets?

• Pconflict(f) remains unchanged for any f
unaffected by pr

104

Final Algorithm

• Initialize CH(P4) and G
• For each remaining point

– Determine visible facets for pr by checking G
– Remove Fconflict(pr) from CH
– Find horizon and add new facets to CH and G
– Update G for new facets by testing the points

in existing conflict lists for facets in CH(Pr-1)
incident to e on the new facets

– Delete pr and Fconflict(pr) from G

105

Fine Point

• Coplanar facets
– pr lies in the plane of a face of CH(Pr-1)

• f is not visible from pr so we merge created
triangles coplanar to f

• New facet has same conflict list as existing
facet

106

