
CS 532: 3D Computer Vision 
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E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215
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Lecture Outline
• Multi-view Stereo part II

– Slides by G. Vogiatzis and L. Zhang
– Paper by A. Collet et al. (2015)

• Introduction to Computational Geometry
• Convex Hulls

– David M. Mount, CMSC 754: Computational 
Geometry lecture notes, Department of Computer 
Science, University of Maryland, Spring 2012

– Slides by:
• B. Gartner, M. Hoffman and E. Welzl (ETH)
• M. van Kreveld (Utrecht University)
• P. Indyk and J.C. Yang (MIT)
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Extracting a Surface from 
Photo-consistency

• Vogiatzis et al. (PAMI 2007)
• Divide the space in voxels
• Compute the photo-consistency of each voxel

– By robustly combining all pairwise NCC scores

• Problem: find a minimum cost surface that 
separates interior from exterior of the object

• Add term that favors large volume, otherwise 
solution collapses to a point
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How to Solve?
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Graph Cut
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Minimum Cut
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Three Equivalent Representations
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Extracting the Surface
• Marching cubes algorithm can extract 

isosurfaces
– Matlab: [tri, pts] = isosurface(V)
– Where V is a binary volume of 0s and 1s
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Results
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Results

10



Volumetric Stereo
• Determine occupancy, “color” of points in V 
• Slides by L. Zhang
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Scene Volume
V

Input Images
(Calibrated)



Discrete Formulation: Voxel Coloring
Goal:  Assign RGBA values to voxels in V photo-consistent
with images
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Discretized 
Scene Volume

Input Images
(Calibrated)



Complexity and Computability
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Discretized 
Scene Volume

N   voxels
C   colors

3

All Scenes (CN3
)Photo-Consistent

Scenes

True
Scene



Reconstruction from Silhouettes 
(C=2)

• Approach:  
• Back-project each silhouette
• Intersect back-projected volumes
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Binary Images



Volume Intersection
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Reconstruction Contains the True Scene
• But is generally not the same 
• In the limit (all views) we get visual hull

> Complement of all lines that do not intersect S



Voxel-based Algorithm
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Color voxel black if on silhouette in every image
• for M images, N3 voxels
• Don’t have to search 2N3 possible scenes!

O(  ?  ),



Results (Franco and Boyer, PAMI 2009)
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Properties of Volume Intersection

Pros
– Easy to implement, fast
– Accelerated via octrees

Cons
– No concavities
– Reconstruction is not photo-consistent
– Requires identification of silhouettes
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Space Carving
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Space Carving Algorithm

Image 1 Image N

…...

• Initialize to a volume V containing the true scene

• Repeat until convergence

• Choose a voxel on the current surface

• Carve if not photo-consistent
• Project to visible input images



Which Shape do You Get?
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The Photo Hull is the UNION of all photo-consistent scenes in V
• It is a photo-consistent scene reconstruction
• Tightest possible bound on the true scene

True Scene

V

Photo Hull

V



Results (Kutulakos and Seitz, IJCV 2000)
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Free-Viewpoint Video

Alvaro Collet, Ming Chuang, Pat Sweeney, 
Don Gillett, Dennis Evseev, David Calabrese,

Hugues Hoppe, Adam Kirk, Steve Sullivan
Microsoft Corporation

SIGGRAPH 2015
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Pipeline
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Reconstruction
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PMVS: system by Furukawa and Ponce, we show last week
PSR: Poisson Surface Reconstruction (last slide last week)



Adaptive Level of Detail
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Keyframe-based Mesh Tracking
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Synthesized Viewpoints
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Synthesized Viewpoints
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Computational 
Geometry
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Computational Geometry

• Subfield of the Design and Analysis of
Algorithms
• Deals with efficient data structures and 

algorithms for geometric problems
• Only about 30 years old

30



Surface Reconstruction

• Digitizing 3D objects, such as the Stanford 
Bunny
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Surface Reconstruction

• Step 1: scan the object with a laser 
scanner to obtain set of points inR3
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Surface Reconstruction

• Step 2: create a triangulation to obtain set 
of triangles in R3
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Surface Reconstruction

• Step 3: process the triangulation to obtain 
smooth surface in R3
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Good and Bad Triangulations in R2
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Good and Bad Triangulations in R2
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Collision Detection
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Collision Detection

• Bounding volume heuristic:
– Approximate the objects by simple ones that 

enclose them (bounding volumes)
– popular bounding volumes: boxes, spheres, 

ellipsoids,...
– if bounding volumes don’t intersect, the 

objects don’t intersect, either
– only if bounding volumes intersect, apply 

more expensive intersection test(s)
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Boolean Operations

• Given two shapes, compute their
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Geometric Basics

Mount – Lecture 21
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Affine Geometry
• Scalars
• Points
• Free vectors or vectors

– In contrast to linear algebra where there is no 
distinction between points and vectors
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Affine Geometry

• Can easily derive
– Vector subtraction
– Scalar-vector division

• Cannot derive
– Point-scalar multiplication
– Point addition

• We can define affine combination
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Why?



Convex Combination
• If 0≤a0,a1≤1, then the operation is called convex 

combination
• Set of all convex combinations traces out line segment

• Set of all affine combinations of three non-collinear 
points generates plane
– Affine span or affine closure

• Set of all convex combinations of three non-collinear 
points generates triangle
– Convex closure
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Euclidean Geometry

• Extension of affine geometry that includes 
inner product

• Maps two real vectors (not points) into real 
scalar
– Define length of vector as square root of inner 

product with itself
– Normalize vector by dividing with its length
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Distance and Angle

• Distance between points: length of the 
vector between them

• Angle between two non-zero vectors, 
ranging from 0 to π
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Orientation of Points

• To make discrete decisions, we would like a 
geometric operation on points that is analogous to 
the relational operations (<,=,>) with numbers. 

• There does not seem to be any natural intrinsic 
way to compare two points in d-dimensional 
space, 

• but there is a natural relation between ordered (d + 
1)-tuples of points in d-space, which extends the 
notion of binary relations in 1-space:

 orientation
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Orientation of Points
• Given an ordered triple of points <p,q,r> 
• Positive orientation if they define 

counterclockwise triangle
• Negative orientation if they define clockwise 

triangle
• Zero orientation if they are collinear
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Orientation of Points

• Formally the sign of the determinant of the points in 
homogeneous coordinates

• 1D case: Orient(p,q)=q-p !!
• Orientation is invariant to translation, rotation and scaling 

by positive scale
• Sign is reversed by reflection e.g. f(x,y)=(-x,y)
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Areas and Angles

• The signed area of triangle is ½ of the 
determinant
– Can be extended to any dimension
– Volume is equal to determinant divided by d!

• The sine of the signed angle from vector p-
q to r-q 
– Can get cosine from inner product
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Informal Topology
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Convex Hulls

D. Mount – Lecture 3
M. Van Kreveld slides
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Polygons

• simple polygon
• polygon with holes
• convex polygon
• non-simple polygon
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Convex Hulls
• Simple approximation for set of points

– Tighter than bounding box, circle or ellipse

• Convexity: A set K is convex if given any points p, q ∈ K, 
the line segment pq is entirely contained within K.

• Convex hull: The convex hull of any set P is the 
intersection of all convex sets that contains P, or more 
intuitively, the smallest convex set that contains P. 
– We will denote it by conv(P).
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Convex Hull Problem
• Given a set of n points P in the plane, output a 

representation of P’s convex hull. 
• The simplest representation is a counterclockwise 

enumeration of the vertices of the convex hull. 
– Although points of P might lie in the interior of an edge 

of the boundary of the convex hull, such a point is not 
considered a vertex. 

– We will assume that the points are in general position, 
and in particular, no three are collinear. Then, this 
issue does not arise.

• Although the output consists only of the boundary 
of the hull, the convex hull includes both the 
boundary and interior of the polygon
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Illustration
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Developing an Algorithm

• Property: The vertices of the 
convex hull are always points 
from the input

• Consequently, the edges of the 
convex hull connect two points of 
the input

• Property: The supporting line of 
any convex hull edge has all 
input points to one side
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Slow Algorithm
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Complexity ?



Incremental Algorithm – Graham’s 
Scan

• Incremental, from left to right
• First compute the upper boundary of the 

convex hull 
– property: on the upper hull, points appear in x-

order
• Main idea: Sort the points from left to right
• Insert the points in this order, and maintain 

the upper hull
• Then complete the lower hull
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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The Algorithm
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Lower Convex Hull
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Correctness

• Does the sorted order matter if two or 
more points have the same x-coordinate?

• What happens if there are three or more 
collinear points, in particular on the convex 
hull?
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Efficiency

• The sorting step takes O(nlogn) time
• Adding a point takes O(1) time for the adding-part. 

Removing points takes constant time for each removed 
point. If due to an addition, k points are removed, the 
step takes O(1+k) time

• Total time:

• if ki points are removed when adding pi

• Since ki = O(n), we get
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Efficiency

• Sometimes there are global arguments why an algorithm 
is more ecient than it seems, at first

• Global argument: each point can be removed only once 
from the upper hull

• This gives us the fact:

• Hence:
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Jarvis’s March Algorithm

• Builds the convex hull in O(nh) time
– h is the number of vertices in the output

• “Gift-wrapping” process
• Analogous to selection sort
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Jarvis’s March Algorithm
• Start with any one point on the convex hull, e.g. the 

lowest point 
• Then find the “next” edge on the hull in counterclockwise 

order
– Assuming that pk and pk−1 were the last two points added to the 

hull, compute the point q that maximizes the angle pk−1pkq
– q can be found in O(n) time
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Jarvis’s March Algorithm

• If h is o(logn), Jarvis’s march is better than 
Graham’s algorithm

• Why?
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Divide and Conquer
• Analogous to merge sort
• Sort points by x coordinate, then

(1) If |P| ≤ 3, then compute the convex hull by brute force in O(1) time 
and return.

(2) Otherwise, partition the point set P into two sets A and B, where A 
consists of half the points with the lowest x-coordinates and B consists 
of half of the points with the highest x-coordinates.

(3) Recursively compute HA = conv(A) and HB = conv(B).

(4) Merge the two hulls into a common convex hull, H, by computing the 
upper and lower tangents for HA and HB and discarding all the points 
lying between these two tangents.
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Divide and Conquer

• LowerTangent(HA,HB) :
(1) Let a be the rightmost point of HA.
(2) Let b be the leftmost point of HB.
(3) While (ab is not a lower tangent for HA and HB) do

(a) While (ab is not a lower tangent to HA) do a ← a.pred (move a 
clockwise).
(b) While (ab is not a lower tangent to HB) do b ← b.succ (move b 
counterclockwise).

(4) Return ab.
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Divide and Conquer

• “ab is not a lower tangent to HA” is 
equivalent to Orient(b,a,a.pred)≥0
– Vertical gap between two partial convex hulls 

needed for this test to hold
– Each vertex is visited at most once
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Complexity

• Partitioning points is O(n) since they are sorted 
according to x

• Returning final results is O(n)
• Tangent computation is O(n)
• Running time is:

• Therefore, T(n) = O(nlogn)
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Quick Hull
1. Find the points with minimum and maximum x 

coordinates, those are bound to be part of the convex 
hull.

2. Use the line formed by the two points to divide the set in 
two subsets of points, which will be processed 
recursively.

3. Add this line in both directions to the convex hull.
4. For each line, find the point with the maximum positive 

distance from the line. Form a triangle with this point and 
the initial endpoints which replaces the line in the convex 
hull.

5. The points lying inside of the triangle cannot be part of the 
convex hull and can therefore be ignored in the next 
steps.

6. Repeat the previous two steps on the two lines formed by 
the triangle (not the initial line).

7. Repeat until no more points are left. The recursion has 
come to an end and the points selected constitute the 
convex hull.
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Convex Hulls in 3D

Slides by P. Indyk and J.C. Yang
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Problem Statement

• Given P, a set of n vertices 
in 3D

• Return convex hull of P: 
CH(P), i.e. the smallest 
polyhedron such that all 
elements of P are on or in 
the interior of CH(P)
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Complexity (Spatial)

• Complexity of CH for n points in 3D is O(n)
• ..because the number of edges of a 

convex polytope with n vertices is at most 
3n-6 and the number of facets is at most 
2n-4

• ..because the graph defined by vertices 
and edges of a convex polytope is planar

• Euler’s formula: n – ne + nf = 2
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Randomized Incremental Algorithm

• Initialize the algorithm
• Loop over remaining points

– Add pr to the convex hull of Pr-1 to transform 
CH(Pr-1) to CH(Pr)

– [for integer r≥1, let Pr:={p1,…,pr} ]
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Initialization

• Need a CH to start with
• Build a tetrahedron using 4 points in P

– Start with two distinct points in P, say, p1 and p2

– Walk through P to find p3 that does not lie on the 
line through p1 and p2

– Find p4 that does not lie on the plane through p1, 
p2, p3

– Special case: No such points exist? Planar case!
• Compute random permutation p5,…,pn of the 

remaining points
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Inserting Points into CH

• Add pr to the convex hull of Pr-1 to 
transform CH(Pr-1) to CH(Pr)

• Two Cases:
(1) Pr is inside or on the boundary of CH(Pr-1)
– Simple: CH(Pr) = CH(Pr-1)
(2) Pr is outside of CH(Pr-1) – the hard case
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Case 2: Pr outside CH(Pr-1)

• Determine horizon of pr on CH(Pr-1)
– Closed curve of edges enclosing the visible 

region of pr on CH(Pr-1)
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Visibility

• Consider a plane hf containing a facet f of 
CH(Pr-1)

• f is visible from a point p if that point lies in 
the open half-space on the other side of hf
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Rethinking the Horizon

• The boundary of polygon obtained from 
projecting CH(Pr-1) onto a plane with pr as 
the center of projection
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CH(Pr-1) to CH(Pr)

• Remove visible facets from CH(Pr-1)
• Found horizon: Closed curve of edges of 

CH(Pr-1)
• Form CH(Pr) by connecting each horizon 

edge to pr to create a new triangular facet
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Algorithm So Far

• Initialization
– Form tetrahedron CH(P4) from 4 points in P
– Compute random permutation of remaining pts

• For each remaining point in P
– pr is point to be inserted
– If pr is outside CH(Pr-1) then

• Determine visible region
• Find horizon and remove visible facets
• Add new facets by connecting each horizon edge to pr

• How do we determine the visible region?
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How to Find the Visible Region

• Naïve approach:
– Test every facet with respect to pr

– O(n2) work

• Trick is to work ahead:
– Maintain information to aid in determining 

visible facets.
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Conflict Lists

• For each facet f maintain
– Pconflict(f) subset of {pr+1, …, pn}
containing points to be inserted that can see f

• For each pt, where t > r, maintain 
– Fconflict(pt) containing facets of CH(Pr) visible 

from pt

• p and f are in conflict because they cannot 
coexist on the same convex hull
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Conflict Graph G

• Bipartite graph
– points not yet inserted
– facets on CH(Pr)

• Arc for every point-facet conflict
• Conflict sets for a point or facet 

can be returned in linear time
• At any step of our algorithm, we 

know all conflicts between the 
remaining points and facets on the current CH
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Initializing G

• Initialize G with CH(P4) in linear time
• Walk through P5-n to determine which facet 

each point can see
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f1

f2

p7

p5

p6



Updating G

• Discard visible facets from pr by removing 
neighbors of pr in G

• Remove pr from G
• Determine new conflicts
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Determining New Conflicts
• If pt can see new f, it can see edge e of f
• e on horizon of pr, so e was already in and 

visible from pt in CH(Pr-1)
• If pt sees e, it saw either f1 or f2 in CH(Pr-1)
• pt was in Pconflict(f1) or Pconflict(f2) in CH(Pr-1)
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Determining New Conflicts
• Conflict list of f can be found by testing the 

points in the conflict lists of f1 and f2 incident to 
the horizon edge e in CH(Pr-1)
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What About the Other Facets?

• Pconflict(f) remains unchanged for any f 
unaffected by pr
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Final Algorithm

• Initialize CH(P4) and G
• For each remaining point

– Determine visible facets for pr by checking G
– Remove Fconflict(pr) from CH
– Find horizon and add new facets to CH and G
– Update G for new facets by testing the points 

in existing conflict lists for facets in CH(Pr-1) 
incident to e on the new facets

– Delete pr and Fconflict(pr) from G
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Fine Point

• Coplanar facets
– pr lies in the plane of a face of CH(Pr-1)

• f is not visible from pr so we merge created 
triangles coplanar to f

• New facet has same conflict list as existing 
facet
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