CS 532: 3D Computer Vision
7t Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215




Logistics

e No class on October 21

* A lecture will be recorded on Friday
October 30 at 3:30 in Webcampus studio

— Please attend if possible



Lecture Outline

e Structure from Motion

e Sources:

— Slides by R. Szeliski, S. Seitz, N. Snavely. S. Lazebnik,
M. Hebert, S. Choudhary

— Visual Odometry by D. Nister, O. Naroditsky, J. Bergen
(2006)

— Parallel Tracking and Mapping by G. Klein and D.
Murray (2007)

— Visual SLAM: Why filter? by H. Strasdat, J.M.M.
Montiel, A.J. Davison (2012)



Structure from Motion
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Input: Feature Tracks
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» Detect good features
- corners, line segments

* Find correspondences between frames
- Lucas & Kanade-style motion estimation
- window-based correlation



Structure from Motion

 Given many points in correspondence across
several images, {(u} v;)}, simultaneously

compute the 3D location x;and camera (or
motion) parameters (K, R t)

a’t] — f( 7Rj7tj7Xi]
@Zj — g( 7Rj7tj7Xi)

 Two main variants: calibrated, and
uncalibrated (sometimes associated with
Euclidean and projective reconstructions)




Number of Constraints
fa’lj — f(KaRjatjvxz)
67,] — g(K,R],t],XZ)
« How many points do we need to match?

« 2 frames:
(R,t): 5 dof + 3n point locations <
4n point measurements =>n > 5

e Kk frames:

6(k-1)-1 + 3n < 2kn
. always want to use many more

=>why 5 dof for 2 cameras and 6(k-1)-1 for k cameras?



Bundle Adjustment

 What makes this non-linear minimization
hard?
— many parameters: potentially slow
— poorer conditioning (high correlation)
— potentially lots of outliers
— gauge (coordinate) freedom



Structure from Motion

* Given a set of corresponding points in two or more
images, compute the camera parameters and the 3D point
coordinates
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Structure from Motion
* Given: mimages of nfixed 3D points
* X; =P X, 1=1,....,m, J=1,..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the /mn correspondences x;;




Structure from Motion Ambiguity

* |If we scale the entire scene by some factor &
and, at the same time, scale the camera
matrices by the factor of 1/4, the projections of
the scene points in the image remain exactly the

Same.

X = PX = G Pj(kX)

It is impossible to recover the absolute scale of the scene!



Structure from Motion Ambiguity

* More generally: if we transform the scene using a
transformation Q and apply the inverse transformation to
the camera matrices, then the images do not change

x =PX = (PQ*)QX)



Projective
15dof

Affine
12dof

Similarity
7dof

Euclidean
6dof

Types of Ambiguity
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Preserves intersection and
tangency

Preserves parallellism,
volume ratios

Preserves angles, ratios of
length

Preserves angles, lengths

With no constraints on the camera calibration matrix or on the

scene, we get a projective reconstruction

Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean



Projective Ambiguity

X = PX = (PQ )(QP




Projective Ambiguity
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Affine Ambiguity
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Similarity Ambiguity
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Similarity Ambiguity




Structure from Motion:
Affine Cameras



Structure from Motion

Let’s start with afﬂne cameras (the math is
easier)
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Orthographic Projection

» Special case of perspective projection
— Distance from center of projection to image plane is infinite

— Projection matrix:

= (z,9)
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Affine Cameras

Orthographic Projection «

Parallel Projection

P

/
<< ® R

/N

® P

/N

0

23



Affine Cameras

* A general affine camera combines the effects of
an affine transformation of the 3D space,
orthographic projection, and an affine

transformation of the image:
10 0 0 Ay A A b o
P=[3x3affine] 0 1 0 O|4x4affine]=|a, a, a, b, :{O J
0 0 0 1] 0 0 0 1
Affine projection is a linear mapping + translation

In Inhomogeneous coordinates

x/ X{XH% 2, aip {blj

= AX+b
A % y Ay Ay 2 /
a Tl o
2 / e X Projection of

a world origin



Affine Structure from Motion

Given: mimages of nfixed 3D points:
Problem: use the mn correspondences x; to estimate

m projection matrices A;and translation vectors b,
and n points X;

The reconstruction is defined up to an arbitrary affine
transformation Q (12 degrees of freedom):

3 e (-

We have 2mnknowns and 8m + 37 unknowns (minus
12 dof for affine ambiguity)

Thus, we must have 2mn>=8m+ 3n-12
For two views, we need four point correspondences



Affine Structure from Motion

« Centering: subtract the centroid of the image points

Xi = X; —izn:xik =A X, +b, —li(Aixk +b;)
N Nz

« For simplicity, assume that the origin of the world
coordinate system is at the centroid of the 3D points

* After centering, each normalized point x;is related to the
3D point X, by

%, = A X



Affine Structure from Motion

« 2mndata (measurement) matrix:

Xin Ko 0 Xy
D= Xa Xp 0 X cameras
.. (2 m)
_Xml Xm2 an_ v
points (n)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. 1JCV, 9(2):137-154, November 1992.



The measurement matrix D = MS must have rank 3!

Affine Structure from Motion
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Factorizing the Measurement Matrix
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Factorizing the Measurement Matrix

* Sinqular value decomposition of D:
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Factorizing the Measurement Matrix
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To reduce to rank 3, we
just need to set all the
singular values to O except

3 for the first 3
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Factorizing the Measurement Matrix

2m D _
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Factorizing the Measurement Matrix

2m

n
3
I ~

Possible decomposition:

M=UW" S=W/>V’

< -

This decomposition minimizes
|ID-MS|?
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Affine Ambiguity

« The decomposition is not unique. We get the same D
by using any 3x3 matrix C and applying the
transformations M — MC, S —C-1S

« That is because we have only an affine transformation
and we have not enforced any Euclidean constraints
(like forcing the image axes to be perpendicular, for
example)
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Algorithm Summary

Given: mimages and nfeatures X
For each image /, center the feature coordinates

Construct a 2m x n measurement matrix D:

— Column jcontains the projection of point /in all views

— Row /contains one coordinate of the projections of all
the n points in image /

Factorize D:

— Compute SVD: D=UW VT

— Create U, by taking the first 3 columns of U

— Create V, by taking the first 3 columns of V

— Create W, by taking the upper left 3 x 3 block of W

Create the motion and shape matrices:

- M=U;W;%2and S=W,;”>V," (orM=U;and S = W,V,")

Eliminate affine ambiguity



Reconstruction Results

120 | 150

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. 1JCV, 9(2):137-154, November 1992.
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Structure from Motion:
Perspective Cameras



Projective Structure from Motion
* Given: mimages of nfixed 3D points
* X; =P X, 1=1,....,m, J=1,..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the /mn correspondences x;;




Projective Structure from Motion

Given: mimages of nfixed 3D points
e Zjj Xij = Pi X, 1=1,...,m, J=1,..,n
Problem: estimate m projection matrices P, and

n 3D points X, from the mn correspondences X,

With no calibration info, cameras and points
can only be recovered up to a 4x4 projective
transformation Q:

« X— QX,P—PQT
We can solve for structure and motion when
e 2mn>=11m+3n-15
For two cameras, at least 7 points are needed




Projective SFM: Two-camera Case

« Compute fundamental matrix F between
the two views

* First camera matrix:  [l|0]
* Second camera matrix: [A|D]
* Then b is the epipole (F'Tb =0), A=-[b,]JF



Seqguential Structure from Motion

e |Initialize motion from two
Images using fundamental
matrix

* |nitialize structure by
triangulation

cameras

* For each additional view:

points

v
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—Determine projection matrix of g
new camera using all the known

3D points that are visible in its

image - calibration

A
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Seqguential Structure from Motion

*Initialize motion from two images
using fundamental matrix

eInitialize structure by triangulation

*For each additional view:

— Determine projection matrix of new
camera using all the known 3D
points that are visible in its image -
calibration

— Refine and extend structure:
compute new 3D points,
re-optimize existing points that are
also seen by this camera -
triangulation

cameras

points

v

e & & & & 0 20

& 8 & & & ® B B

& & & & & & B B W
& & & & & B B B W
& & &8 & & & B BB
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Seqguential Structure from motion

*Initialize motion from two images using
fundamental matrix

eInitialize structure by triangulation points
*For each additional view: teeeenee
& & & & & B8 8 @
— Determine projection matrix of new v YR EEREE
camera using all the known 3D points S | |[# & &« & & & & »
that are visible in its image - C| |eeeeeeee
calibration S| |eee e 0000
e & & & & 2 0 @
® & & & & & & @ @
— Refine and extend structure: compute TEEEERERIE
new 3D points, ! ®" oo 00

re-optimize existing points that are
also seen by this camera -
triangulation

*Refine structure and motion: bundle
adjustment



Bundle Adjustment

* Non-linear method for refining structure and motion
* Minimizing reprojection error

m n 2

E(P,X) =YY D(x;,PX,)

i=1 j=1

X|

i B




Self-calibration

Self-calibration (auto-calibration) is the process of
determining intrinsic camera parameters directly from
uncalibrated images

For example, when the images are acquired by a
single moving camera, we can use the constraint that
the intrinsic parameter matrix remains fixed for all the
Images

— Compute initial projective reconstruction and find 3D

projective transformation matrix Q such that all camera
matrices are in the form P, = K [R; | t;]

Can use constraints on the form of the calibration
matrix: zero skew

Can use vanishing points



Triangulation

More formulations exist



Triangulation: Linear Solution

 Generally, rays C>x
and C’->x’ will not
exactly intersect

« (Can solve via SVD,
finding a least =
sguares solution to a
system of equations

T AT
AX:O A: Vp3 p2

.
From xxPX = 0 and x’xPX’ =0 |V Ps _p’2 i



Triangulation: Linear Solution

Given P, P’, x, X’ u

1. Precondition points and X=Wvp x=
projection matrices 1

2. Create matrix A o

3. [U, S, V] =svd(A) P:

4. X=V(;, end) P = p% P =

of
Pros and Cons up! —p!
* Works for any number of vp! —p!

corresponding images A=l
 Not projectively invariant




Triangulation: Non-linear Solution

* Minimize projected error while satisfying
' Fx=0

cost(X) = dist(x,x)? + dist(x',x")?




Triangulation: Non-linear Solution

* Minimize projected error while satisfying
%' FR=0
cost(X) = dist(x, %)% + dist(x',x")?

e
FT\\“\MLI? x' e .
X e
It . 5 X
Lo~ e e (1)
image 1 — e . image 2

e Solutionis a 6-degree polynomial of ¢,
minimizing d(x, 1(t))* +d(x', 1 (1))’



Bundle Adjustment



Bundle Adjustment

* Refines a visual reconstruction to produce
jointly optimal 3D structure and viewing
parameters

» ‘Bundle’refers to the bundle of light rays
leaving each 3D feature and converging
on each camera center.



Reprojection Error

O

reprojection error ||q;; — P(C;, X;)||

objectwe functlon

9(C, X) = ZZ“’UHQU P(C5, X)Hz

=1 5=1 \

indicator variable:
1 if point jis visible in camera i

0 otherwise )
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Notation

Structure and Cameras being parameterized
by a single large vector x

Small displacement in X represented by dx
Observations denoted by z

Predicted values at parameter value X,
denoted by z = z(x)

Residual prediction error, Az(x) = z — z(x)



Objective Function

* Minimization of weighted sum of squared
error ( SSE ) cost function:

f(x) = 1) Az,(X)"W; Az, (x). AZ.(X) = z, — Zi(X)



Optimization Techniques

Gradient Descent Method
Newton-Raphson Method
Gauss - Newton Method
Levenberg - Marquardt Method



Gradient Descent Method

A first-order optimization algorithm.

* To find a local minimum of a function using
gradient descent, one takes steps proportional to
the negative of the gradient of the function at the
current point.

e |tis robust when x is far from optimum but has
poor final convergence

//’f?*;:_‘_‘ N
7NN\
l‘,-"‘ / ;’/ // / T T \ \\\ A\ \"\ A
‘ :"ll ..‘"‘l ‘-‘j r/ / . \ \\. \‘. \“ \ \."‘

it to ) |
| } / / | i
. \ ,24\ S

While k<k,.,
Xe = X




Newton - Raphson Method

e Second order optimization method

 Newton's method can often converge
remarkably quickly, especially if the
iteration begins "sufficiently near" the
solution

f(x + 0x) ~ f(x)+ g7 ox + 36X Hdx = T (x) H= 3T

quadratic local model gradient vector Hessian matrix

9 (x 1+ 6x) ~ Hox+g



Newton - Raphson Method

e For a quadratic function it converges in
one iteration

* For other general function, its asymptotic
convergence is quadratic

* The disadvantage of this method is the
high computation complexity of H~1



Gauss - Newton Method

 The Gauss-Newton algorithm is a method
used to solve non-linear least squares
problems

f(x) = 1 Az(x)"W Az(x)

g = d_; = AZ'WJ H = % = JTWJ + Z-é.{&ZTWJ?'-%

di‘zi .y
Ha JTWJ. oz ~0

(JTWJ)ox = —J"WAZ



Gauss - Newton Method

* For well-parameterized bundle problems
under an outlier-free least squares cost
model evaluated near the cost minimum,
the Gauss-Newton approximation is
usually very accurate



Levenberg - Marquardt Algorithm

 LMA interpolates between the Gauss Newton
algorithm (GNA) and gradient descent

e When it is far from the minimum it acts as a
steepest descent and it performs Gauss
Newton iterations when it is near the solution

(H+ AW)ox = —g

A > 1 = Gradient Descent Method
A <1 = Gauss — Newton Method



General Implementation Issues

 EXxploit the problem structure
— See reduced camera matrices below

» Use factorization effectively
 Use stable local parameterizations
« Scaling and preconditioning

SfM in large areas, limited image overlap Highly overlapping images in small area



Additional Material and Software

 Open Source Structure-from-Motion
tutorial at CVPR 2015

— http://www.kitware.com/cvpr2015-tutorial.html
 Advanced notes on bundle adjustment

 Tutorials on several popular open source
SfM packages




“Visual Odometry for Ground
Vehicle Applications” by
David Nister, Oleg Naroditsky
and James Bergen (2006)



Visual Odometry

* Focus on high accuracy and real-time
performance

 One important conclusion: stereo cameras
are necessary to avoid drift and enable
long term deployment



VO Steps

e Detect Harris corners in each frame

* Do not track them using KLT, but extract in
each frame separately

— Use NCC in 11x11 windows

* Do bundle adjustment in sliding window
mode often



o o

Monocular Pipeline

Track features over a certain number of frames. Estimate the
relative poses between three of the frames using the 5-point
algorithm and preemptive RANSAC followed by iterative refinement.

Triangulate the observed feature tracks into 3D points using the first
and last observation on each track and optimal triangulation
according to directional error. If this is not the first time through the
loop, estimate the scale factor between the present reconstruction
and the previous camera trajectory with another preemptive
RANSAC procedure. Put the present reconstruction in the
coordinate system of the previous one.

Track for a certain additional number of frames. Compute the pose
of the camera with respect to the known 3D points using the 3-point
algorithm and preemptive RANSAC followed by iterative refinement.

Re-triangulate the 3D points using the first and last observations on
their image track. Repeat from Step 3 a certain number of times.

Repeat from Step 1 a certain number of times.
Insert a firewall and repeat from Step 1.



The 5-point Algorithm

Computes relative camera pose given a minimal number
of 5 correspondences
— Up to 10 real solutions

Intrinsics must be known
Code available at http://vis.uky.edu/" stewe/FIVEPOINT/



The 3-point Algorithm

* A.k.a. the Perspective 3 Point problem (Haralick
et al. 2004)

« Estimate camera pose given images of three
known 3D points z

\

_ Up to 4 real solutions ™. CP (CENTER OF PERSPECTIVE)

IMAGE PLANE

PRINCIPAL POINT

VERTICAL
AXIS
|
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Stereo Pipeline

Match feature points between the left and right images of the
stereo pair. Triangulate the observed matches into 3D
points.

Track features for a certain number of frames. Compute the
pose of the stereo rig with preemptive RANSAC followed by
iterative refinement. The 3-point algorithm (considering the
left image) is used as the hypothesis generator. The scoring
and iterative refinement are based on reprojection errors in
both frames of the stereo pair.

Repeat from Step 2 a certain number of times.

Triangulate all new feature matches using the observations
in the left and right images. Repeat from Step 2 a certain
number of times.

Re-triangulate all 3D points to set up a firewall. Repeat from
Step 2.



Advantages of Stereo System

 Fixed, known baseline sets and maintains
global scale
* Avoids the difficult relative orientation step

— Instead, performs triangulation followed by
pose estimation



Results

Remote controlled run in a
parking lot. DGPS - Dark
Blue.

Wheel encoders fused with
gyro- Medium Red.

Visual odometry fused with
gyro - Light Green

North (m)

0F

10 F

20k

-30 F

4ot |

A0

Parking Lot 1

-40 -30 -20 -10 0
East (m)
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Parallel Tracking and Mapping
(PTAM)

Probably most reliable solution for limited spaces
(Klein and Murray 2007)

— http://www.robots.ox.ac.uk/~gk/PTAM/

Tracking and Mapping are separated, and run in two
parallel threads

Mapping is based on keyframes, which are processed
using batch techniques (Bundle Adjustment)

The map is densely initialized from a stereo pair (5-
Point Algorithm)

New points are Initialized with an epipolar search
Large numbers (thousands) of points are mapped



The Map

 The map consists of a collection of M point features
located in a world coordinate frame W

— Each point feature represents a locally planar textured patch in
the world

— Each point also has a unit patch normal and a reference to the
patch source pixels
 The map also contains N keyframes: these are
snapshots taken by the handheld camera at various
points in time

— Each keyframe has an associated camera-centered coordinate
frame

— Each keyframe also stores a four level pyramid of greyscale
images



o o kA w b

Tracking

. A new frame is acquired from the camera, and a prior

pose estimate is generated from a motion model

Map points are projected into the image according to
the frame’s prior pose estimate

A small number (50) of the coarsest-scale features
are searched for in the image

The camera pose is updated from these coarse
matches

A larger number (1000) of points is re-projected and
searched for in the image.

A final pose estimate for the frame is computed from
all the matches found



Mapping

Stereo initialisation

New keyframe?

Update keyframe
data association

Locally No

converged?

v

Local

bundle adjust

Integrate
keyframe
Globally
converged?
Add new
features

Global
bundle adjust

Update
data association

Sleep 5ms
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Results
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« PTAM can easily track across multiple scales
 Here, the map is initialized at the top-right scale

 The user moves closer in and places a label, which is still

accurately registered when viewed from far away
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Visual SLAM: Why Filter?

H. Strasdat, J.M.M. Montiel, A.J. Davison (2012)

The most accurate solution to off-line Structure from
Motion (SFM): extract as much correspondence
information as possible and perform batch optimization

Sequential methods for live video streams must
approximate this to fit within fixed computational bounds.

Two quite different approaches that sparsify the problem
in different ways:

— Filtering methods marginalize out past poses and summarize the
information gained over time with a probability distribution

— Keyframe methods retain the optimization approach of global
bundle adjustment, but select only a small number of past frames
to process



Visual SLAM: Why Filter?

Filter Keyframe BA

e Filteri ng: ‘f.’.‘;ﬁ:zﬁ“\fy \f'.x’;‘\’tz
— All poses other than the current one are marginalized out after every frame
— Features, which may be measured again in the future, are retained

— The graph quickly becomes fully inter-connected, since every elimination of a
past pose variable causes fill-in with new links between every pair of feature
variables to which it was joined - poor scalability

e Bundle adjustment

— Solve the graph from scratch time after time as is grows, but sparsify it by
removing all but a small subset of past poses

— The other poses, and all the measurements connected to them, are not
marginalized out as in the filter, but simply discarded

— The graph has more elements but it remains sparsely inter-connected

— The ability to incorporate more feature measurements counters the information
lost from the discarded frames



Visual SLAM: Why Filter?

« Key question: does it make sense to summarize the
information gained from historic poses and
measurements by joint probability distributions in state
space and propagate these through time (filtering), or to
discard some of those measurements in such a way that
repeated optimization from scratch becomes feasible
(keyframe BA)?

* In analysis considering both monocular and stereo SLAM
on various different scenes and motion patterns:
keyframe bundle adjustment outperforms filtering

— It gives the highest accuracy per unit of computing time



