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Lecture Outline

e |Intro to Covariance Matrices

e Simultaneous Localization and Mapping

— Based on slides by William Green (then at
Drexel)

— See also "An Introduction to the Kalman Filter”
by Greg Welch and Gary Bishop

http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf




Covariance

Covariance is a numerical measure that
shows how much two random variables
change together

Ojk = E [(Y;j — H-j)(};.k: — H-fc)]

Positi\_/e _covariance: If one increases, the
other is likely to increase

Negative covariance: ...

More precisely: the covariance is a measure
of the /inear dependence between the two
variables



Covariance Example

Relationships between the returns of different stocks

Stock A return

* *

* *

Scatter plot |

Stock B
return

Stock C Return

Scatter Plot 11
*

* % *

Stock D
return

* *




Correlation Coefficient

 One may be tempted to conclude that if
the covariance is larger, the relationship
between two variables is stronger (in the
sense that they have stronger linear
relationship)

 The correlation coefficient is defined as:

E{[(Yij — pj)(Yie — pire)]

!CTJ' T I

pik =



Correlation Coefficient

E{[(Yij — pj)(Yie — pire)]

!CTJ' T I

pik =

* The correlation coefficient, unlike covariance, is
a measure of dependence free of scales of
measurement of Y; and Y,

» By definition, correlation must take values
between -1 and 1

o A correlation of 1 or —1 is obtained when there is
a perfect linear relationship between the two
variables



Covariance Matrix

 For the vector of repeated measures, Y, = (Y,

Y., ..., Yi.), we define the covariance matrix,
Cov(Y)):

i1 Var(Y;) Cov(Y;1,Ys2) -+ Cov(Yi1,Yin)
coo| Yo | _ [ cov¥aYa) Va() - Cov(Y¥i,Yi)
Y-Ti.'n. (.:(_)""(Yfi-n-- }f-.'l) C—"'OV(}':‘-H-* 3723) R \"Ta-l‘(}f;!-rz.)
O_f 012 O1n
_ 021 g5 O2n
Oni On2 O-ﬁ

where Cov (Y, Yar) = o5 = o = Cow( Yo, Y35

 |tis a symmetric, square matrix



Variance and Confidence Intervals

» Single Gaussian (normal) random variable
1 _(x=p)° 2

: P = e 22 =N(y0")
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Multivariate Normal Density

— The multivariate normal density in d dimensions is:

P(X)=—— 1 1,26Xp[—1(x—u)t2'1(x—u)]
(27) ‘2" 2

where:

X = (X1, Xg, oy Xg)!

1= (Kq, Wy, - Ug)t Mean vector

> = dxd covariance matrix

|~| and -1 are the determinant and inverse respectively

P(x) is larger for smaller exponents!



e Confidence intervals are ellipsoids for normal

Confidence Intervals:
Multi-Variate Case

e Same concept: how large is the area that
contains X% of samples drawn from the
distribution

distribution

Process 2

= 99.73% confidence region
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Process 2 - 95% confidence region
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Confidence Intervals:

Multi-Variate Case

* Increasing X%, increases the size of the
ellipsoids, but not their orientation and aspect
ratio
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The Multi-Variate Normal Density

e 2 is positive semi definite (x' Zx>=0)
— If xt2x =0 for non-zero x then det(2)=0. This
case is not interesting, p(x) is not defined

» Two or more parameters are linearly
dependent

 So we will assume 2 is positive definite
(xt2x >0)
e If 2 is positive definite then so is 21



Confidence Intervals:
Multi-Variate Case

o Covariance matrix - F xeeomsomsuom

determines the
shape
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Confidence Intervals:
Multi-Variate Case
e Casel: J =07l

« All variables are uncorrelated and have equal
variance

e Confidence intervals are circles
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Confidence Intervals:
Multi-Variate Case

e Case ll: XJ'diagonal, with unequal elements

e All variables are uncorrelated but have different
variances

» Confidence intervals are axis-aligned

=
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Confidence Intervals:
Multi-Variate Case

e Case lll: X'arbitrary

« Variables may be correlated and have different
variances

o Confidence intervals are arbitrary

ellipsoids
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Intro to SLAM



Introduction

SLAM Obijective

e Place a robot in an unknown location in an unknown
environment and have the robot incrementally build a
map of this environment while simultaneously using this
map to compute vehicle location

e A solution to SLAM was seen as the “Holy Grail”

— Would enable robots to operate in an environment without a
priori knowledge of obstacle locations

« A little more than 10 years ago it was shown that a
solution is possible!



The Localization Problem

A map m of landmark locations is known a priori

Take measurements of landmark location z, (i.e. distance
and bearing)

Determine vehicle location x, based on z,
— Need filter if sensor is noisy

X,. location of vehicle at time k —~

u,: a control vector applied at \

k-1 to drive the vehicle from \\ e

X1 to %k K* : N

z,. observation of a landmark *» -
taken at time k - f ri,—/t"'-. % e, \@
Xk history of states {X;, X, X, “7 I T [
Uk: history of control inputs {u;, ST : X, |

Uy, Us, ..., U} i ™ o \ *‘
m: set of all landmarks L\ P /{j:




The Mapping Problem

The vehicle locations X* are provided
Take measurements of landmark location z, (i.e. distance

and bearing)

Build map m based on z,
— Need filter if sensor is noisy

Xk: history of states {x,, X,, Xs,
ey Xie}

z,: observation of a landmark
taken at time k

m;: true location of i" landmark
m: set of all landmarks

(™
.‘--._\ ‘2} \.
NS LW
*s
2y . \7
P
Z % \‘Q} /



Simultaneous Localization and Mapping

« From knowledge of observations ZX
e Determine vehicle location Xk
e Build map m of landmark locations

X, location of vehicle at time k
u,: a control vector applied at k-

1 to drive the vehicle from * a

X,.1 10 X, . ”
m;: true location of it landmark £ z. /| \ i
z,. observation of a landmark *® o X, .\ / .
taken at time k St
Xk: history of states {X;, X, X3, ., | Xy / Wl ﬁ ; 2

X, } ff" ik = N B
U: history of control inputs {uj, = V T Y
Uy, Ug, ., Uy} 1)'2 " »
m: set of all landmarks N

ZX: history of all observations i
{z4, 2, .., Z,} *»




Simultaneous Localization and Mapping

« Localization and mapping are coupled problems

* A solution can only be obtained if the localization and
mapping processes are considered together

‘*mi X, a
* x|-<+1::5/_/_ _; ’
P .
XI( i xk ___H,,f"ﬁ.# - q 1 ’
zk 1,0~ I' ‘
<l o



SLAM Fundamentals

* A vehicle with a known kinematic model moving through
an environment containing a population of landmarks
process model

 The vehicle is equipped with a sensor that can take
measurements of the relative location between any
individual landmark
and the vehicle itself NG
observation model

Vehicle-Feature Relative
¢ Observation

ey
S
P e e
S
Lol A
et o T
S e S S e L
b et Ty,

] @
o
=

Mobile Vehicle

Global Reference Frame
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Process Model

For better understanding, a linear model of the vehicle is
assumed

If the state of the vehicle is given as x,(k) then the vehicle
model is

X (k+1) = F (k)x,(k) + u,(k+1) + w,(k+1)
where
— F,(k) is the state transition matrix

— u, (k) is a vector of control inputs

— w, (K) is a vector of uncorrelated process noise errors with zero
mean and covariance Q, (k)

The state transition equation for the it" landmark is

pi(k+1) = pi(k) = p
SLAM considers all landmarks stationary



Process Model

 The augmented state vector containing both the state of
the vehicle and the state of all landmark locations is

v(k) = [x7 (k)

* The state transition model for the complete system is now

x (k+1)]

Py

Pn

where

F (k)
0

0
/

7

0

0

I

0
0
0

Py

T
T T
P, P ]
x (K)] [u,(k+D)] [w (k+1)]
i 0:”1 + 0.‘”1
| Py u OP.-\-' 1 L OP.-\-' |

— | is the dim(p;) x dim(p;) identity matrix
— 0, is the dim(p;) null vector




Observation Model

 Assuming the observation to be linear, the
observation model for the ith landmark is given

as
z(k) = Hx(k) + v;(k)
e where

— vi(k) is a vector of uncorrelated observation errors
with zero mean and variance Ri(k)

— H, is the observation matrix that relates the sensor
output z(k) to the state vector x(k) when observing
the it" landmark and is written as

Hi = [- _Ivs O O, Hpi! O O]
 Re-expressing the observation model
z(k) = —Ipip - H x, (k) + v,(k)




Estimation Process

e Objective
— The state of the discrete-time process x, needs to be
estimated based on the measurement z,

— This is the exact definition of the Kalman filter

« Kalman Filter

— Recursively computes estimates of state x(k) which is
evolving according to the process and observation
models

— The filter proceeds in three stages
* Prediction
* Observation
e Update



Estimation Process

Prediction

 After initializing the filter (i.e. setting values for x(k)
and P(k)), a prediction is generated for

— The a priori state estimate
X(k+1|k)=F(k)x(k | k)+u(k)
— The a priori observation relative to the it" landmark

2 (k+1|k)=H (k)%(k +1|k)

— The a priori state covariance (e.g. a measure of how
uncertain the states computed by the process model are)

P(k+11k)=F(k)Pk|k)F' (k)+O(k)



Estimation Process

Observation

» Following the prediction, an observation z(k+1) of
the i" landmark is made using the observation

model
e An innovation and innovation covariance matrix are

calculated

— Innovation is the discrepancy between the actual
measurement z, and the predicted measurement Z(k)

vik+) =z (k+1)=2 (k+1|k)
S (k+1)=H (k)P(k+1|k)H" (k) + R (k +1)



Estimation Process

Update

 The state estimate and corresponding state
estimate covariance are then updated according to

x(k+1|k+1)=x(k+1|k)+W.(k+1)v,(k+1)

Pk+1|k+1)=P(k+1|k)=W.(k+1)S(k+D)W' (k+1)

* where the gain matrix W.(k+1) is given by

W(k+1)=Pk+1|k)H' (k)S™(k+1)



Kalman Filter

Developed by Rudolph E. Kalman in 1960

A set of mathematical equations that provides
an efficient computational (recursive) means
to estimate the state of a process

It supports estimations of
— Past states

— Present states

— Future states

and can do so when the nature of the
modeled system is unknown!



Kalman Filter Properties

e Given all measurements up to current time,
the Kalman filter algorithm is the optimal
Minimum Mean Squared Error (MMSE)
estimator of the state

 Provided that:

— initial state is Gaussian with known mean and
covariance;

— process and observations models are linear;

— and no_ise terms are uncorre_lated, white,
Gaussian, zero mean and with known
covariances.



Discrete Kalman Filter

Process Model

« Assumes true state at time k evolves from
state (k-1) according to

X(k) = F x(k-1) + G u(k-1) + w(k)
 where
— F is the state transition model (A matrix)

— G is the control input matrix (B matrix)

— w(k) is the process noise which is assumed to be
white and have a normal probability distribution

p(w) ~ N(0,Q)



Discrete Kalman Filter

Observation Model

e Attime k, a measurement z(k) of the true
state x(k) is made according to

z(k) = H x(k) + v(k)
 where

— H is the observation matrix and relates the
measurement z(k) to the state vector x(k)

— v(k) is the observation noise which is assumed to
be white and have a normal probability
distribution

p(w) ~ N(O,R)



Discrete Kalman Filter

Algorithm

e Recursive

— Only the estimated state from the previous time step and
the current measurement are needed to compute the
estimate for the current state

* The state of the filter is represented by two variables
— X(k): estimate of the state at time k

— P(k|k): error covariance matrix (a measure of the estimated
accuracy of the state estimate)

 The filter has two distinct stages
— Predict (and observe) /-~ \
— Update

Predict Update



Discrete Kalman Filter (Notation 1)

Prediction

* Predicted state | x(k|k—=1)+ F(k)x(k=1[k=1)+ B(k)u(k-1)

 Predicted covari Plklk-D)E F(K)P(k-1|k-DF ()" + O(k)

Observation

* Innovation V(k)y=z(k)-H (k)x(k |k —1)
* Innovation covatliance S (k)= H (k)P(k |k —=1)H (k)" + R(k)

Update Not the same variable!!

+  Optimal Kalman I;ain K(k)y=P(k|k-1)H (k) S(k)'
« Updated state X(k|k)|l=x(k|k-1)+ K(k)y (k)
* Updated covariance——p (k| k)|= (I = K (k)H (k))P(k |k —1)

Not the same variable!!
36



Discrete Kalman Filter (Notation 2)

Prediction

* Predicted state x(k)” = F(k)x(k—=1)+ Bu(k-1)
* Predicted estimate covariance P (k) = FP (k- 1)F' + 0,

Observation

* Innovation y(k)=z(k)-Hx(k)
* Innovation covariance S(k)=HP (k)  H" + R

Update

* Optimal Kalman gain K (k)= P(k) HS (k)
 Updated state estimate x(k)=x(k) + K(k)y (k)
« Updated estimate covariance Pky=(—-K(k)YH)P(k)

37



Kal

man Filter Example

Estimate a scalar random constant (e.g. voltage )
- Measurements are corrupted by 0.1 volt RMS white

noise

0.15

02

025+

03¢

0351

@
=7}
E D4

-0.45

05+

085+

06

-0.65

1 1 1 1 1 1 1 | |
] s 10 15 20 25 30 35 40 45 50
time
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Kalman Filter Example

Process Model
 Governed by the linear difference equation

x(k) = Fx(k 1)+ Gu(k —1) + w(k)

_ _ : State doesn’t change (F=1)
x(k) - x(k l) * W(k) No control input (u=0)

e with a measurement

=(k) = Hx(k) + v(k)

M t is of stat
Z(k) — X(k) + V(k) —> eas;lirrir;?yﬂ(lilsza)s ate




Kalman Filter Example

EEEEEEEE

true
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t=0

t=1

t=2

t=3

o

Another Example

Kinematic Equations

y, = 125

¥o &

. ] ,
Y —Yo = VAl + Ea(m)'

}} =

Positio

Vs + BAL

n (from model)

140

120

100

80

height

B0

40 -

20 -

]

I I I 1 I I I 1 1
0 045 1 i) 2 Feld] 3 BiE 4 4.5 4]
time
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Process Model
y(k+1)= y(k) + i (k)Ar %G(A,)z
y(k+1)=y(k)+ alt

where |iy(k T 1)} =x(k+1) and {y(k)} = x(k)

y(k+1) (k)

SO ) ]
[1 Az At~

_O : - ) At |

42



Observation Model

z(k)=Hx(k)+v(k)

where H = [l 0] because z is a
measurement of the height directly

z=[127.0
72.4

115.3
50.7

110.9
0.3]

height

140

1
100}
a0 |-
60 |
o}

20+

0.5 1 1.5 2 25 3
time
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Kalman Filter

Initial Estimates
. [yGk-1] [100 k|1

Prediction / \

1
x(k) = : 1'3]( 1 2 981 P(k) = 1 .lPk—l Lo + 00
A()—Oll(—)fl—. ()—01 ( )1 i 0 0

Observation and Update

K(k)=P(k) H' (HP(k)y H +R)"
X(k)=x(k)" + K(k)[z(k)— Hx(k)"]

P(k)=(I-K(kYH)P(k)
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Kalman Filter

140 T T T T , T T T

120

——nh

sys model

hmeasurecl

h

kalman

100 |-

80

height

60

40

20
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Non-Linear Systems

Kalman Filter
« Limited to linear systems

« A non-linearity in a system can be associated with
either the process model or the observation model (or
both)

Extended Kalman Filter

e Process and observation models can both be non-
linear

x(k) = f(x(k-1),u(k-1),w(k-1))
z(k) = h(x(k),v(k))
 where f and h are non-linear functions



Extended Kalman Filter

Noise Parameters

* In practice, one does not know the noise
values w(k) and v(k) at every time step

* |nstead, the state and measurement vector
are approximated without them

X (k)= f(X(k=1),u(k),0)
Z(k)=h(x(k),0)

 where X(k) is some a posteriori estimate of
the state



EKF

X(k) = f(%(k =1),u(k),0)
Z (k)= h(X(k),0)

To estimate a non-linear process, we need to linearize system at the
current state

x(k)=%k)+ A(x(k=1) = x(k 1))+ Ww(k - 1)
z(k)=Z(k)+ J,(x(k) =X (k))+ (k)

x (k). z(k) : actual state and measurement vectors

X (k),z (k) : approximate state and measurement vectors
X(k) :aposteriori estimate of the state at step k

w(k),v(k) : process and measurement noise

4 . Jacobian matrix of partial derivatives of f w.r.t. x
w - Jacobian matrix of partial derivatives of fw.r.t. w
J

-

- Jacobian matrix of partial derivatives of h w.r.t. x
V - Jacobian matrix of partial derivatives of h w.rt. v




EKF

Let's define new notations for the prediction and measurement error
e (k)=x(k)—x(k) e.(k)=z(k)-Z (k)
Therefore, we have
e (k)= A(x(k-1) - x(k-1)+¢e(k)
e.(k)~J, e (k)+n(k)

p(s(k))~ N(0.m0 (kyw™)

where (k) and n(k) represent new noise var.
e p(n(k)~ NO.VR (k)T

The above equations are linear and closely resemble the difference
equations from the discrete KF. Therefore, we could use a 2" Kalman filter
to estimate the prediction error

é(k)y=e(k) +K,(z(k)=Z(k))= K,e.(k) (update equation)

é‘_ (k) =Ix(k)}F X (k) This is what we are trying to find!!

49



EKF

 Rearranging the predicted error estimate yields
e (ky=x(k)-X(k) ==> x(k)=Xk)+e (k)

* Plugging in from the previous slide

Ry =X (k) + K, 2. (k) ==>| 2(k)=X(k)+ K, (z(k) = Z(k))

 The equation above can now be used in the
measurement update in the EKF



EKF

Prediction

« Predicted state X(k) = f(R(k=1),u(k-1),0)

« Predicted estimate covariance P(k) = F(k)P(k-1)E(k)" +W(k)O(k -DW (k)"
Observation

* Innovation y(k)=z(k)— H  where His the sensor model

* Innovation covariance S (k)= J,(k)P(k) J,(k)" +V (k)R(k)V (k)’

Update
+ Optimal Kalmangain K (k)= P(k) J, (k) S(k)™
« Updated state estimate x(k)=x(k) + K(k)y (k)

+ Updated estimate covariance P(ky=(-K(k)J,(k))P(k)
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EKF

Prediction

(1) Project the state ahead
(k)™ = f(Z(k=1),u(k ~1),0)
(2) Project the error covariance ahead

P(k)™ = F(R)P(k—)F () +W(k)OUk— D)W (k)"

Observation and Update

Initial estimates for
(k=1 & P(k-1)

(1) Compute the Kalman gain
Kk =Pk, () (J, G0 POy, (Y +V RGOV ()
(2) Update estimate with measurement z(k)

X(k)=%(k) +K(k)[z(k) - H]

(3) Update error covariance
P(k)= (1=K (k)J, (k)P (k)"
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Simple Robot Model

Kinematic Equations

\

x=Vcos6b

y=Vsinb

> Non-linear!




Simple Robot Model

Kinematic Equations f(x,u,w)

— —_—

x=Vcos@ x(k+1)] || x(k)+ AtV (k)cosO(k)

y=Vsmn6 - y(k+1) | 3| v(k)+AtV(k)sinO(k)

g P t;nqé 0+D) | || o)+ AtV (k) tan (k)
L

- —

Assumptions

System inputs 14}
— Velocity (assumed constant, vel=3) 7
— Steering angle (¢) :
At is fixed and equal to 1

L=1

10 iterations (N=10) I S e R R VR R
¥ [meters |
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Observation Model

Measurements are taken from an overhead camera, and thus x, y, and 0
can be measured directly

x(k)+ v,
z(k) = h(x(k),v(k)) => z(k)=|y(k)+v,
| O(k) +v, |
0r 160 P
sys model sys model
18 measure s measure d o
16+ \ : - / e
\ 120+ o
14} \ L
o [\ 100t /
T Y
Em— E 80+ .%/
) J © e} /-/
d| //f, ot /;l
4t
A 'ﬁt_'/a__%;' a /
e T ”u/{ 2 3 4 5 6 7 8 9

i [meters] time



Prediction

(k)" = f(R(k=1,u(k -1),0)
P(k)” = F(k)P(k=D)F (k)" + W (})O(k —1)

x(k+1)= f(x(k),u(k), w{k)) =

F(k)=

,

,

,

o,

oy
&>

Gl
P

o,

oy
ds

00
ds

oy

o0

x(k)+ AtV (k)cosO(k) & .
(k) + AtV (k) sin O(k) —3 | Need to calculate Jacobians!
o) + AtV (k) tang(k)
oh 9
1 0 —Vsind] ow, ow, M| o 0 o
0 1 Veost | k)= G 9 |y o o
0 0 1 ow, ow, Ow, 00 0
afl% afg 8f; — -
@WT 8w1 8w9

EKF

from robot model

k)
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Kalman Gain

EKF

K (k) = P(kY J, (k)" (7, (k)P(k)" T, (k) + V()R (k)" )

Jh(k)z

z(k) = h(x(k),v(k)) =
oh, ok oh,
ox v 00
oh, oh, o,
x o o0
oh, oh, on,
o oy 00

x(k)+v,
vk +v,
O(k)+v,

S = O

_—c O

~

Vik)=

> | Need to calculate Jacobians!

oh,

oh,

oh,

ov
oh,

ov.
01?2

ov,
61?2

ov
ch,

ov
ch;

ov,
oh,

ov

oV

oV,

oSO =

o = O

_ o O
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EKF

Measurement Update

y [meters]

X(k)y=x(k) +K(k)(z(k)-H)
P(k)=(I-K(k)J,(k))P(k)

160 -

measure d 140 F

120 -

100

80

6 [degs]

60

aof

0+

)| E—

[l | 1 I
14 16 18 20
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SLAM Example - Single
Landmark



Robot Process Model

B Radar Location

Kinematic Equations

=Veosy )
) =V sin
Y (0 > Non-linear!
. Vtany
P = /
i ]
_ f(x,u,w) _

[ x(k+1)| | x(k)+ AtV (k)cosp(k)
Yk +1) | =| y(k)+ AtV (k)sin (k) |+ w(k)

Q)(k+l) @(k)_i_AfV(k)tﬂH}/(k)
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Objective

 Based on system inputs, V and y (with
sensor feedback, i.e. optical encoders) at
time k, estimate the vehicle position at

time (k+1)



Landmark Process Model

Therefore,

P;-(k+1)—p (k)
W (k+l) Af(k)
y,(k+D) | |y, (k)

B Radar Location {X (k—f—l)} {Al(k)}
e+ ] [ nk)

Recall that in the SLAM algorithm,
landmarks are assumed to be stationary.
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Overall System Process Model

Cx(k+ )] | X))+ AV (k) cosp(k) | v (k)]
yk+1) | | YE+HAV(E)sing(k) ||y (k)
ok +1) | =| (i) + AtV (k)tan y (k) + w, (k)
x,(k+1) x k)L 0

RACES ) v, (k) |

Landmark 1: (3,4) »2']

mmmmmmmm



Observation Model

B Radar Location

z(k) = h(x(k), v(k))

The radar used in the experiment returns
the range r(k) and bearing 6,(k) to a
landmark i. Thus, the observation model is

(k) =~/ (x, = x, (b)) + (v, — v, (k) +v, (k)

0.(k) = arctan( Vi =, (k)

x, —x (k)

j—cf)(k)ﬂ’e(ff)
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The Estimation Process

Prediction

(k) = f(R(k=1),u(k -1),0)

P(k)y =F(k)P(k-D)F (k) +W(k)Ok-DW (k)" *

F(k) =

o o o o 9,
& & Op oy, oy,

o o O O -

0 —AtV(k)smepk) 0 0
1 AtV(k)cosp(k) 0O O
0 | 0 0
0 0 1 0
0 0 0 1

x(k+1)=

| x(k)+ AtV (k) coso(k) |

y(k)+ AtV (k) sing(k)

o(k)+

AtV (k) tany(k)

x; ()
(k)
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The Estimation Process

Prediction

x(k+1)=

(k) = f(X(k=1),u(k —=1),0)
P(k)” = F(k)P(k-)F (k)" +W({k)O(k -DW (k)"

9 9% % 9 9
ow, Ow, ow, Ow, Ow

X 3 @ X "

o o o

: 2 & 1 0
Gw_\, 6W,| awgo Gw\,l 8W1‘1 O l
W(k)=|— : ~ =0 0
o o o o o | |0
8‘4/’.\' aw\ (‘}W’(p 614/’\1 @er ‘0 O

o o o o .

X 3 @ Y M

[ x(k)+ AtV (k) cosg(k) |
v(k)+AtV(k)sing(k)
)+ AtV (k) tany(k)

X (k)

n(k)

I

== = e =~
= =2 & 2 O
o O O o O
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The Estimation Process

Kalman Gain

K(k)=P(k) J,(k) (J, () PU) I, (k)" +V ()R (k) )

_ — —
cy] |V =30 F 0 -50ey)
z(ky=| I " |= D) +v(k)
L’f(}(J tan™| 2 J,: () — |— (k)
i x, —x(k) ]
oh oh b O Oh | [y— A VR s —y ]
J ( k) — X @; 8@ axl E)y‘l — r r r r
¢ oh, oh, oh, oh, oh | |y,—-y x—x | Yl X
& & Gp & o L P S

where 7 Z\/(x; —X)"+(V,— )

67



The Estimation Process

Kalman Gain

K(k)=P(k) J, ()" (J,()PG) T, () +V(ORKIW (k) )

cr] | =5 4=k ]
k =’ — y 1y - ) ]{
“©laah, o o R
X, —X

oh,  oh,

o | ov. ov, | |10
"o on {0 J

8‘/‘1‘ avﬁ
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The Estimation Process

Measurement Update

%(k) = X(k)” + K (k)(=(k) - H(k))
P(k) = ([—K(k).]h(k))])(k)_ R Innovation

z(k) is 10 fabricated
measurements of range
and bearing to landmark 1.

There is only one landmark
and it is incorporated into
the model from the start.

y [meters)

20 -

—#— robot pos (model)

18r robot pos (SLAM)

O landmark (true)
landmark (SLAM)

16+

14 -

o —
| /

(=] 8] = =7 L]
i,

| | 1 1 | 1 1
0 2 4 B g 10 12 14 16 18 20
¥ [meters]
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SLAM Example - Multiple
Landmarks



Overall System Process Model

X(k-l-l) X(k)-l—AfV(k) COSQ)(k) M’ (k)
y(k+1) v(k)+ AtV (k)sin p(k) w (k)

- AtV (k)tany(k |
pk+1) | _| p(k)+ ( )L y (k) G
pik+D) py (k) 0

| py(k+1) ] i py (k) | L 0
Landmark 1: (3,4) o
Landmark 2: (12,7) g o

Landmark 3: (13,14) i




Observation Model

B Radar Location

z(k) = h(x(k),v(k))

The radar used in the experiment returns
the range r(k) and bearing 06,(k) to a
landmark i. Thus, the observation model is

(k) = (x, = x, ()} + (v, = v, ()} +v, (k)

0.(k) = arctan U AGN N @(k)+v, (k)
x,—x. (k)
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The Estimation Process

Prediction

X(ky = f(X(k=1),u(k =1),0)
P(k) =F(k)P(k-=D)F k) +WE)Ok-DW (k)"

x(k+1)=

Initially, before landmarks are added

x(k)+ AtV(k)cosp(k)

v(k)+ AtV (k)smep(k) |+w(k)
AtV (k) tany (k)

o(k)+

0P| 10 —AV(R)sing(k) oW ow, oW, | T (]

F(k)= Céf CO;]E ;{; =0 1 AV(k)cosp(k) W(k)= z $ ;z; =0 1 ()
o, 5]? o, 0 0 1 | o o o 0 0 1]
ax o o _(,-QW\. ow, (?wm_
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The Estimation Process

Kalman Gain

K(ky=P(ky J,(K) (T, () P(k) T, (k)" +V () R(EW (k)T )

- (F
0= L;((k))

Initially, before landmarks are added

oh, Oh

Yoo =5y V(=500 )
Vi— j:’(k)_

|

-~

ox Oy

Jik)= oh, oh,

(k)=

ERE

where 7= \/(Xf -+, =)

)y | D ) [ O
|2 2|2
Il
 —
s R —
—_
L 1

D
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The Estimation Process

Measurement Update

(k) = 3(k) +K(k)(z(k) - H(k))
P(k)= (I =K (k)J, (k))P(k)"

Now, if a landmark is observed at t(k+1),
the state model is updated

Cx(k+1)] | X+ AtV (k) cos (k) W (k)]

vik+1) | | YEO+AV(K)smek) | |y (k)
AtV (k) tan y (k) '

pk+1) |=| p(k)+ 7 +| w, (k)
X, (k+1) x, (k) 0
n(k+D] | v, (k) Lo

x,(k+1)=x(k)+rcos6 v (k+1)=y(k)+rsmé



The Estimation Process

[ x(k)+ AtV (k) coso(k) ]
v(E)+ AtV (k) sine(k)

Prediction (2)

PP . AtV(k)tany (k)
(kY = f(Z(k=1),u(k=1),0) XD =) o)+ o

P(k) = F()P(k~DF (k) +W ()0~ (k) L #®

of 0
. where N is the
F(k) — 8(35;(.)]}: @) ]2Nx Y number of landmarks

w (k) |
w, (k)
W, (k)
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The Estimation Process

Kalman Gain (2)

K(k)y=Pk) J, (k)" (J,, (k)P(k) J, (k)" +V(k)R(k)V (k)" )'1

If observing the 15t landmark

J,z,(k){ oh (’7‘]1) - o}

A - 3 -
O('\ b} ,Va qo) o (Af ” J”,‘

If observing the 2" landmark

J, (k) =| - M g . B 5 .. 0
X, y,9) Ax;,);)

Must repeat for each landmark!!

77



The Estimation Process

Measurement Update (2)

(k)= %(k) +K(k)(z(k)— H(k))
P(k) = (I = K (k)J, (k))P(k)



