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Lecture Outline

• Intro to Covariance Matrices
• Simultaneous Localization and Mapping

– Based on slides by William Green (then at 
Drexel)

– See also “An Introduction to the Kalman Filter” 
by Greg Welch and Gary Bishop 
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
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Covariance

• Covariance is a numerical measure  that 
shows how much two random variables 
change together

• Positive covariance: if one increases, the 
other is likely to increase

• Negative covariance: …
• More precisely: the covariance is a measure 

of the linear dependence between the two 
variables
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Covariance Example
Relationships between the returns of different stocks
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Correlation Coefficient

• One may be tempted to conclude that if 
the covariance is larger, the relationship 
between two variables is stronger (in the 
sense that they have stronger linear 
relationship)

• The correlation coefficient is defined as:
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Correlation Coefficient

• The correlation coefficient, unlike covariance, is 
a measure of dependence free of scales of 
measurement of Yij and Yik

• By definition, correlation must take values 
between −1 and 1

• A correlation of 1 or −1 is obtained when there is 
a perfect linear relationship between the two 
variables
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Covariance Matrix
• For the vector of repeated measures, Yi = (Yi1, 

Yi2, ..., Yin), we define the covariance matrix, 
Cov(Yi):

• It is a symmetric, square matrix
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Variance and Confidence Intervals

• Single Gaussian (normal) random variable
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Multivariate Normal Density

– The multivariate normal density in d dimensions is:

where:
x = (x1, x2, …, xd)t

 = (1, 2, …, d)t mean vector
 = d×d covariance matrix
|| and -1 are the determinant and inverse respectively
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Confidence Intervals: 
Multi-Variate Case

• Same concept: how large is the area that 
contains X% of samples drawn from the 
distribution

• Confidence intervals are ellipsoids for normal 
distribution
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Confidence Intervals: 
Multi-Variate Case

• Increasing X%, increases the size of the 
ellipsoids, but not their orientation and aspect 
ratio
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The Multi-Variate Normal Density

• Σ is positive semi definite (xtΣx>=0)
– If xtΣx =0 for non-zero x then det(Σ)=0. This 

case is not interesting, p(x) is not defined
Two or more parameters are linearly 

dependent

• So we will assume Σ is positive definite 
(xtΣx >0)

• If Σ is positive definite then so is Σ-1

12O. Veksler



Confidence Intervals: 
Multi-Variate Case

• Covariance matrix 
determines the 
shape
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Confidence Intervals: 
Multi-Variate Case

• Case I:  = 2I
• All variables are uncorrelated and have equal 

variance

• Confidence intervals are circles
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Confidence Intervals: 
Multi-Variate Case

• Case II:  diagonal, with unequal elements
• All variables are uncorrelated but have different 

variances

• Confidence intervals are axis-aligned 
ellipsoids
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Confidence Intervals: 
Multi-Variate Case

• Case III:  arbitrary
• Variables may be correlated and have different 

variances

• Confidence intervals are arbitrary 
ellipsoids
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Intro to SLAM
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Introduction

SLAM Objective
• Place a robot in an unknown location in an unknown 

environment and have the robot incrementally build a 
map of this environment while simultaneously using this 
map to compute vehicle location

• A solution to SLAM was seen as the “Holy Grail”
– Would enable robots to operate in an environment without a 

priori knowledge of obstacle locations

• A little more than 10 years ago it was shown that a 
solution is possible!
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The Localization Problem
• A map m of landmark locations is known a priori
• Take measurements of landmark location zk (i.e. distance 

and bearing)
• Determine vehicle location xk based on zk

– Need filter if sensor is noisy
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• xk: location of vehicle at time k
• uk: a control vector applied at 

k-1 to drive the vehicle from 
xk-1 to xk

• zk: observation of a landmark 
taken at time k

• Xk: history of states {x1, x2, x3, 
…, xk}

• Uk: history of control inputs {u1, 
u2, u3, …, uk}

• m: set of all landmarks



The Mapping Problem

• The vehicle locations Xk are provided
• Take measurements of landmark location zk (i.e. distance 

and bearing)
• Build map m based on zk

– Need filter if sensor is noisy
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• Xk: history of states {x1, x2, x3, 
…, xk}

• zk: observation of a landmark 
taken at time k

• mi: true location of ith landmark
• m: set of all landmarks



Simultaneous Localization and Mapping

• From knowledge of observations Zk

• Determine vehicle location Xk

• Build map m of landmark locations

21

• xk: location of vehicle at time k
• uk: a control vector applied at k-

1 to drive the vehicle from 
xk-1 to xk

• mi: true location of ith landmark
• zk: observation of a landmark 

taken at time k
• Xk: history of states {x1, x2, x3, …, 

xk}
• Uk: history of control inputs {u1, 

u2, u3, …, uk}
• m: set of all landmarks
• Zk: history of all observations 

{z1, z2, …, zk}



Simultaneous Localization and Mapping

• Localization and mapping are coupled problems
• A solution can only be obtained if the localization and 

mapping processes are considered together
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SLAM Fundamentals
• A vehicle with a known kinematic model moving through 

an environment containing a population of landmarks 
(process model)

• The vehicle is equipped with a sensor that can take 
measurements of the relative location between any 
individual landmark 
and the vehicle itself 
(observation model)
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Process Model
• For better understanding, a linear model of the vehicle is 

assumed
• If the state of the vehicle is given as xv(k) then the vehicle 

model is
xv(k+1) = Fv(k)xv(k) + uv(k+1) + wv(k+1)

• where
– Fv(k) is the state transition matrix
– uv (k) is a vector of control inputs
– wv (k) is a vector of uncorrelated process noise errors with zero 

mean and covariance Qv(k)

• The state transition equation for the ith landmark is
pi(k+1) = pi(k) = pi

• SLAM considers all landmarks stationary
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Process Model
• The augmented state vector containing both the state of 

the vehicle and the state of all landmark locations is

• The state transition model for the complete system is now

• where
– Ipi is the dim(pi) x dim(pi) identity matrix
– 0pi is the dim(pi) null vector
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Observation Model
• Assuming the observation to be linear, the 

observation model for the ith landmark is given 
as

z(k) = Hix(k) + vi(k)
• where

– vi(k) is a vector of uncorrelated observation errors 
with zero mean and variance Ri(k)

– Hi is the observation matrix that relates the sensor 
output zi(k) to the state vector x(k) when observing 
the ith landmark and is written as

Hi = [-Hv, 0 … 0, Hpi, 0 … 0]
• Re-expressing the observation model

z(k) = Hpip - Hvxv(k) + vi(k)
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Estimation Process
• Objective

– The state of the discrete-time process xk needs to be 
estimated based on the measurement zk

– This is the exact definition of the Kalman filter

• Kalman Filter
– Recursively computes estimates of state x(k) which is 

evolving according to the process and observation 
models

– The filter proceeds in three stages
• Prediction
• Observation
• Update
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Estimation Process
Prediction
• After initializing the filter (i.e. setting values for (k) 

and P(k)), a prediction is generated for
– The a priori state estimate

– The a priori observation relative to the ith landmark

– The a priori state covariance (e.g. a measure of how 
uncertain the states computed by the process model are)
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Estimation Process
Observation
• Following the prediction, an observation zi(k+1) of 

the ith landmark is made using the observation 
model

• An innovation and innovation covariance matrix are 
calculated
– Innovation is the discrepancy between the actual 

measurement zk and the predicted measurement ̂ݖ(k) 
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Estimation Process
Update
• The state estimate and corresponding state 

estimate covariance are then updated according to

• where the gain matrix Wi(k+1) is given by
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Kalman Filter

• Developed by Rudolph E. Kalman in 1960
• A set of mathematical equations that provides 

an efficient computational (recursive) means 
to estimate the state of a process

• It supports estimations of
– Past states
– Present states
– Future states

• and can do so when the nature of the 
modeled system is unknown!
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Kalman Filter Properties

• Given all measurements up to current time, 
the Kalman filter algorithm is the optimal 
Minimum Mean Squared Error (MMSE) 
estimator of the state

• Provided that:
– initial state is Gaussian with known mean and 

covariance;
– process and observations models are linear;
– and noise terms are uncorrelated, white, 

Gaussian, zero mean and with known 
covariances.
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Discrete Kalman Filter

Process Model
• Assumes true state at time k evolves from 

state (k-1) according to
x(k) = F x(k-1) + G u(k-1) + w(k)

• where
– F is the state transition model (A matrix)
– G is the control input matrix (B matrix)
– w(k) is the process noise which is assumed to be 

white and have a normal probability distribution
p(w) N(0,Q)
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Discrete Kalman Filter

Observation Model
• At time k, a measurement z(k) of the true 

state x(k) is made according to
z(k) = H x(k) + v(k)

• where
– H is the observation matrix and relates the 

measurement z(k) to the state vector x(k)
– v(k) is the observation noise which is assumed to 

be white and have a normal probability 
distribution

p(w) N(0,R)

34



Discrete Kalman Filter
Algorithm
• Recursive

– Only the estimated state from the previous time step and 
the current measurement are needed to compute the 
estimate for the current state

• The state of the filter is represented by two variables
– x(k): estimate of the state at time k
– P(k|k): error covariance matrix (a measure of the estimated 

accuracy of the state estimate)
• The filter has two distinct stages

– Predict (and observe)
– Update
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Discrete Kalman Filter (Notation 1)
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Discrete Kalman Filter (Notation 2)
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Kalman Filter Example

• Estimate a scalar random constant (e.g. voltage )
• – Measurements are corrupted by 0.1 volt RMS white 

noise
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Kalman Filter Example

Process Model
• Governed by the linear difference equation

• with a measurement
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Kalman Filter Example
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Another Example
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Process Model
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Observation Model
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Kalman Filter
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Kalman Filter
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Non-Linear Systems
Kalman Filter
• Limited to linear systems
• A non-linearity in a system can be associated with 

either the process model or the observation model (or 
both)

Extended Kalman Filter
• Process and observation models can both be non-

linear
x(k) = f(x(k-1),u(k-1),w(k-1))

z(k) = h(x(k),v(k))
• where f and h are non-linear functions
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Extended Kalman Filter

Noise Parameters
• In practice, one does not know the noise 

values w(k) and v(k) at every time step
• Instead, the state and measurement vector 

are approximated without them

• where (k) is some a posteriori estimate of 
the state
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EKF
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EKF
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EKF

• Rearranging the predicted error estimate yields

• Plugging in from the previous slide

• The equation above can now be used in the 
measurement update in the EKF
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EKF
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EKF
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Simple Robot Model
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Simple Robot Model
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Observation Model
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EKF

56



EKF
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EKF
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SLAM Example – Single 
Landmark
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Robot Process Model
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Objective

• Based on system inputs, V and γ (with 
sensor feedback, i.e. optical encoders) at 
time k, estimate the vehicle position at 
time (k+1)
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Landmark Process Model

62



Overall System Process Model

63



Observation Model
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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SLAM Example – Multiple 
Landmarks
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Overall System Process Model
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Observation Model
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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