CS 532: 3D Computer Vision 5th Set of Notes

Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215

Lecture Outline

• Feature tracking

Mostly based on slides by Derek Hoiem, also partially based on sources by C. Tomasi, T. Kanade and T. Svoboda

Feature Matching

- Given a feature in I, how to find the best match in J?
- So far we have searched for best match by testing all possible translations by integer number of pixels
 - Restricted to be purely horizontal in stereo case

Kanade-Lucas-Tomasi Tracking

- Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Conference on Artificial Intelligence, pages 674-679, August 1981.
- Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Technical Report CMU-CS-91-132, Carnegie Mellon University, April 1991.
- Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 593-600, 1994.
- Code: http://www.ces.clemson.edu/~stb/klt/

Camera Motion

Object Motion

Feature Tracking

- Challenges
 - Figure out which features can be tracked
 - Efficiently track across frames
 - Some points may change appearance over time (e.g., due to rotation, moving into shadows, etc.)
 - Drift: small errors can accumulate as appearance model is updated
 - Points may appear or disappear: need to be able to add/delete tracked points

Feature TrackingImage: Second systemImage: Seco

- Given two subsequent frames, estimate the point translation
- Key assumptions of Lucas-Kanade Tracker
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors

The Brightness Constancy Constraint

$$(x, y)$$
displacement = (u, v)
 $(x + u, y + v)$
 $I(x, y, t)$
 $I(x, y, t+1)$

• Brightness Constancy Equation:

$$I(x, y, t) = I(x + u, y + v, t + 1)$$

Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

Image derivative along x Difference over frames

$$I(x+u, y+v, t+1) \approx I(x, y, t) + I_x \cdot u + I_y \cdot v + I_t$$

$$I(x+u, y+v, t+1) - I(x, y, t) = I_x \cdot u + I_y \cdot v + I_t$$
Hence, $I_x \cdot u + I_y \cdot v + I_t \approx 0 \quad \rightarrow \nabla I \cdot [u \ v]^T + I_t = 0$

The Brightness Constancy Constraint

Can we use this equation to recover image motion (u,v) at each pixel?

 $\nabla \mathbf{I} \cdot \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix}^{\mathrm{T}} + \mathbf{I}_{\mathrm{t}} = \mathbf{0}$

• How many equations and unknowns per pixel?

•One equation (this is a scalar equation!), two unknowns (u,v)

The component of the motion perpendicular to the gradient (i.e., parallel to the edge) cannot be measured

The Aperture Problem

The Aperture Problem

The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Solving the Ambiguity...

- How to get more equations for a pixel?
- Spatial coherence constraint
- Assume the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Solving the Ambiguity...

• Least squares problem:

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix} \xrightarrow{A \ d = b}_{25 \times 2 \ 2 \times 1 \ 25 \times 1}$$

Matching Patches across Images

• Overconstrained linear system

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix} A = b$$

$$(I_x(\mathbf{p}_{25}) = I_y(\mathbf{p}_{25}) A = b$$

Least squares solution for *d* given by $(A^T A) d = A^T b$ $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$ $A^T A \qquad A^T b$

The summations are over all pixels in the K x K window

Conditions for Solvability

Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad A^T b$$

When is this solvable? I.e., what are good points to track?

- **A^TA** should be invertible
- A^TA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- A^TA should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = largest eigenvalue)

Does this remind you of anything?

Criteria for Harris corner detector

$M = A^{T}A$ is the second moment matrix ! (Harris corner detector...)

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

- Eigenvectors and eigenvalues of A^TA relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
 - The other eigenvector is orthogonal to it

Low-texture region

 $\sum \nabla I (\nabla I)^T$ - gradients have small magnitude
- small λ_1 , small λ_2

Edge

$$\begin{split} \sum \nabla I (\nabla I)^T \\ &- \text{gradients very large or very small} \\ &- \text{large } \lambda_1, \text{ small } \lambda_2 \end{split}$$

High-texture Region

$$\begin{split} \sum \nabla I (\nabla I)^T \\ &- \text{gradients are different, large magnitudes} \\ &- \text{large } \lambda_1, \text{large } \lambda_2 \end{split}$$

The Aperture Problem Resolved

The Aperture Problem Resolved

Dealing with Larger Motion: **Iterative Refinement**

Original (x,y) position

- 1. Initialize (x',y') = (x,y)
- 2. Compute (u,v) by

Tompute (x,y) – (x,y)
Tompute (u,v) by

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

2nd moment matrix for feature patch in first image displacement

- 3. Shift window by (u, v): x' = x' + u; y' = y' + v;
- Recalculate I, 4.
- 5. Repeat steps 2-4 until change is small
 - Use interpolation for subpixel values

Shi-Tomasi Feature Tracker

- Find good features using eigenvalues of secondmoment matrix (e.g., Harris detector or threshold on the smallest eigenvalue)
 - Key idea: "good" features to track are the ones whose motion can be estimated reliably
- Track from frame to frame with Lucas-Kanade
 - This amounts to assuming a translation model for frame-to-frame feature movement
- Check consistency of tracks by *affine* registration to the first observed instance of the feature
 - Affine model is more accurate for larger displacements
 - Comparing to the first frame helps to minimize drift

Tracking Example

Figure 1: Three frame details from Woody Allen's *Manhattan*. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.

Figure 2: The traffic sign windows from frames 1,6,11,16,21 as tracked (top), and warped by the computed deformation matrices (bottom).

Summary of KLT tracking

- Find a good point to track (Harris corners)
- Use intensity second moment matrix and difference across frames to find displacement
- Iterate and use coarse-to-fine search to deal with larger movements
- When creating long tracks, check appearance of registered patch against appearance of initial patch to find points that have drifted