
CS 532: 3D Computer Vision 
5th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1



Lecture Outline

• Feature tracking

Mostly based on slides by Derek Hoiem, also 
partially based on sources by C. Tomasi, T. 
Kanade and T. Svoboda
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Feature Matching

• Given a feature in I, how to find the best 
match in J?

• So far we have searched for best match by 
testing all possible translations by integer 
number of pixels
– Restricted to be purely horizontal in stereo 

case
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Kanade-Lucas-Tomasi Tracking
• Bruce D. Lucas and Takeo Kanade. An iterative image 

registration technique with an application to stereo 
vision. In Proceedings of the 7th International 
Conference on Artificial Intelligence, pages 674–679, 
August 1981.

• Carlo Tomasi and Takeo Kanade. Detection and tracking 
of point features. Technical Report CMU-CS-91-132, 
Carnegie Mellon University, April 1991.

• Jianbo Shi and Carlo Tomasi. Good features to track. In 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pages 593–600, 1994.

• Code: http://www.ces.clemson.edu/~stb/klt/
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Camera Motion
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Object Motion
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Feature Tracking
• Challenges

– Figure out which features can be tracked
– Efficiently track across frames
– Some points may change appearance over 

time (e.g., due to rotation, moving into 
shadows, etc.)

– Drift: small errors can accumulate as 
appearance model is updated

– Points may appear or disappear: need to be 
able to add/delete tracked points
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Feature Tracking

• Given two subsequent frames, estimate the point 
translation

• Key assumptions of Lucas-Kanade Tracker
• Brightness constancy:  projection of the same point looks the 

same in every frame
• Small motion: points do not move very far
• Spatial coherence: points move like their neighbors

I(x,y,t) I(x,y,t+1)
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• Brightness Constancy Equation:

The Brightness Constancy Constraint

tyx IvIuItyxItvyuxI  ),,()1,,(

),(),,( 1,  tvyuxItyxI
Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

I(x,y,t) I(x,y,t+1)

0 tyx IvIuIHence,

Image derivative along x
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Difference over frames
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• How many equations and unknowns per pixel?

The component of the motion perpendicular to the 
gradient (i.e., parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 
so does (u+u’, v+v’ ) if

•One equation (this is a scalar equation!), two unknowns (u,v)

  0IvuI t
T 

  0'v'uI T 

Can we use this equation to recover image motion (u,v) at 
each pixel?
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The Brightness Constancy Constraint



The Aperture Problem

Actual motion
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The Aperture Problem

Perceived motion
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The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion 13



The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion 14



Solving the  Ambiguity…
• How to get more equations for a pixel?
• Spatial coherence constraint
• Assume the pixel’s neighbors have the same (u,v)

– If we use a 5x5 window, that gives us 25 equations per pixel
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• Least squares problem:

Solving the  Ambiguity…
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Matching Patches across Images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by
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Conditions for Solvability
Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable?  I.e., what are good points to 
track?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues 1 and 2 of ATA should not be too small
• ATA should be well-conditioned

– 1/ 2 should not be too large (1 = largest eigenvalue)

Criteria for Harris corner detector 
18



• Eigenvectors and eigenvalues of ATA 
relate to edge direction and magnitude 
• The eigenvector associated with the larger 

eigenvalue points in the direction of fastest 
intensity change

• The other eigenvector is orthogonal to it

M = ATA is the second moment matrix !
(Harris corner detector…)
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Low-texture region

– gradients have small magnitude
– small 1, small 2
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Edge

– gradients very large or very small
– large 1, small 2
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High-texture Region

– gradients are different, large magnitudes
– large 1, large 2
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The Aperture Problem Resolved

Actual motion
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The Aperture Problem Resolved

Perceived motion
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Dealing with Larger Motion: 
Iterative Refinement

1. Initialize (x’,y’) = (x,y)
2. Compute (u,v) by

3. Shift window by (u, v): x’=x’+u; y’=y’+v;
4. Recalculate It
5. Repeat steps 2-4 until change is small

• Use interpolation for subpixel values

2nd moment matrix for feature 
patch in first image displacement

It = I(x’, y’, t+1) - I(x, y, t) 

Original (x,y) position
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image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Dealing with Larger Motion: 
Coarse-to-Fine Registration

run iterative L-K

run iterative L-K

upsample

.

.

.
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Shi-Tomasi Feature Tracker
• Find good features using eigenvalues of second-

moment matrix (e.g., Harris detector or threshold on 
the smallest eigenvalue)
– Key idea: “good” features to track are the ones whose 

motion can be estimated reliably

• Track from frame to frame with Lucas-Kanade
– This amounts to assuming a translation model for 

frame-to-frame feature movement

• Check consistency of tracks by affine registration to 
the first observed instance of the feature
– Affine model is more accurate for larger displacements
– Comparing to the first frame helps to minimize drift
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Tracking Example
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Summary of KLT tracking
• Find a good point to track (Harris corners)

• Use intensity second moment matrix and 
difference across frames to find displacement

• Iterate and use coarse-to-fine search to deal with 
larger movements

• When creating long tracks, check appearance of 
registered patch against appearance of initial 
patch to find points that have drifted
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