
CS 532: 3D Computer Vision 
3rd Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215
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Lecture Outline

• Fundamental Matrix estimation
• Binocular Stereo

– Matching criteria

Based on slides by R. Hartley, A. Zisserman, 
M. Pollefeys, R. Szeliski and P. Fua
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Projective Transformation and Invariance
-1-T FHH'F̂ x'H''x̂ Hx,x̂ 

   X̂P̂XHPHPXx -1 

F invariant to transformations of projective 3-space

   X̂'P̂XHHP'XP'x' -1 

  FP'P, 

 P'P,F
unique

not unique
canonical form

m]|[MP'
0]|[IP


   MmF     PP'e'F
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The Projective Reconstruction Theorem
If a set of point correspondences in two views determine the
fundamental matrix uniquely, then the scene and cameras may be 
reconstructed from these correspondences alone, and any two such 
reconstructions from these correspondences are projectively 
equivalent

  i111 X,'P,P   i222 X,'P,Pii xx 
-1

12 HPP  -1
12 HPP  ii 12 HXX   0FxFx :except  ii

  iiiii 22111
-1

112 XPxXPHXHPHXP 

 along same ray of P2, idem for P‘2

two possibilities: X2i=HX1i, or points along baseline

key result: 
allows reconstruction from pair of uncalibrated images
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Stratified Reconstruction
(i) Projective reconstruction
(ii) Affine reconstruction
(iii) Metric reconstruction

Out of scope of CS 532
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The Essential Matrix
~fundamental matrix for calibrated cameras (remove K)

    t]R[RRtE T

0x̂E'x̂ T 

FKK'E T

  x'K'x̂ x;Kx̂ -1-1 

5 d.o.f. (3 for R; 2 for t up to scale)

E is an essential matrix if and only if two singular values 
are equal (and the third=0)

T0)VUdiag(1,1,E 
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Four Possible Solutions from E

Given E and setting the first camera matrix P = [I | 0], there are four possible solutions for P’
(only one solution, however, where a reconstructed point is in front of both cameras)
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Fundamental Matrix 
Estimation

9



Epipolar Geometry: Basic Equation
0Fxx'T 

separate known from unknown
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The Singularity Constraint
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The Singularity Constraint
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The Minimum Case – 7 Point Correspondences
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One parameter family of solutions – results in 1 or 3 real solutions

but F1+F2 not automatically rank 2
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~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

!
Orders of magnitude difference
between column of data matrix
 least-squares yields poor results

The NOT Normalized 8-point Algorithm
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Transform image to [-1,1]x[-1,1]
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normalized least squares yields good results

The Normalized 8-point Algorithm
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Some Experiments
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Some Experiments
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i

iiii dFd 2T2 x'F,xx,x'

(for all points!)

Residual error:

Some Experiments
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Recommendations:

1. Do not use unnormalized algorithms

2. Quick and easy to implement: 8-point normalized

3. Better: enforce rank-2 constraint during minimization

4. Best: Maximum Likelihood Estimation
(minimal parameterization, sparse implementation)
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Robust Estimation
• What if set of matches contains gross outliers?
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RANSAC
Objective

Robust fit of model to data set S which contains outliers
Algorithm
(i) Randomly select a sample of s data points from S and 

instantiate the model from this subset.
(ii) Determine the set of data points Si which are within a 

distance threshold t of the model.  The set Si is the 
consensus set of samples and defines  the inliers of S.

(iii) If the subset of Si is greater than some threshold T, re-
estimate the model using all the points in Si and terminate

(iv) If the size of Si is less than T, select a new subset and 
repeat the above.

(v) After N trials the largest consensus set Si is selected, and 
the model is re-estimated using all the points in the 
subset Si
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How many samples?
• Choose t so probability for inlier is α (e.g. 0.9) 

– Or empirically

• Choose N so that, with probability p, at least one random sample is 
free from outliers. e.g. p =0.99

    sepN  11log/1log

   pe
Ns  111

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177
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Acceptable consensus set?
• Typically, terminate when inlier ratio reaches expected ratio of inliers

 neT  1
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Adaptively determining the number of 
samples

e is often unknown a priori, so pick worst case, e.g. 50%, and adapt 
if more inliers are found, e.g. 80% would yield e=0.2 

– N=∞, sample_count =0
– While N >sample_count repeat

• Choose a sample and count the number of inliers
• Set e=1-(number of inliers)/(total number of points)
• Recompute N from e
• Increment the sample_count by 1

– Terminate

    sepN  11log/1log
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Step 1. Extract features
Step 2. Compute a set of potential matches
Step 3. do

Step 3.1 select minimal sample (i.e. 7 matches)
Step 3.2 compute solution(s) for F
Step 3.3 determine inliers

until p(#inliers,#samples)>95% or 99%

  samplesp #7 )1(1
matches#

inliers#

#inliers 90% 80% 70% 60% 50%

#samples 5 13 35 106 382

Step 4. Compute F based on all inliers
Step 5. Look for additional matches
Step 6. Refine F based on all correct matches

(generate 
hypothesis)

(verify hypothesis)



RANSAC for F Estimation
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restrict search range to neighborhood of epipolar line 
(1.5 pixels)

relax disparity restriction (along epipolar line)

Finding more matches
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• Degenerate cases
– Planar scene
– Pure rotation

• No unique solution
– Remaining DOF filled by noise
– Use simpler model (e.g. homography)

• Model selection (Torr et al., ICCV´98, Kanatani, Akaike)

– Compare H and F according to expected residual error 
(compensate for model complexity)

Degenerate Cases
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Stereo Matching

Slides by Rick Szeliski, Pascal 
Fua and P. Mordohai
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Stereo Matching

• Given two or more images of the same scene 
or object, compute a representation of its 
shape

• What are some possible applications?

?
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Stereo Matching

• Given two or more images of the same scene 
or object, compute a representation of its 
shape

• What are some possible representations?
– depth maps
– volumetric models
– 3D surface models
– planar (or offset) layers
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Stereo Matching

• What are some possible algorithms?
– match “features” and interpolate
– match edges and interpolate
– match all pixels with windows (coarse-fine)
– use optimization:

• iterative updating
• dynamic programming
• energy minimization (regularization, stochastic)
• graph algorithms



32

Rectification

• Project each image onto same plane, which is parallel to 
the baseline

• Resample lines (and shear/stretch) to place lines in 
correspondence, and minimize distortion

• Take rectification for granted in this course
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Rectification

BAD!
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Rectification

GOOD!



35

Finding Correspondences
• Apply feature matching criterion at all

pixels simultaneously
• Search only over epipolar lines (many 

fewer candidate positions)
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Basic Stereo Algorithm

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost
Improvement:  match windows



Disparity

• Disparity d is the difference between the x 
coordinates of corresponding pixels in the 
left and right image

d=xL-xR

• Disparity is inversely proportional to depth
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Stereo Reconstruction
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Finding Correspondences

• How do we determine correspondences?
– block matching or SSD (sum squared differences)

– d is the disparity (horizontal motion)

• How big should the neighborhood be?

ܦܵܵ ,ݔ ;ݕ ݀ ൌ  ሾ
௫ᇲ,௬ᇲ ∈ ௫,௬

ܫ ,ᇱݔ ᇱݕ െ ᇱݔோሺܫ െ ݀, ᇱሻሿଶݕ
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Neighborhood size
• Smaller neighborhood: more details
• Larger neighborhood:  fewer isolated 

mistakes

w = 3 w = 20



Challenges
• Ill-posed inverse problem

– Recover 3-D structure from 2-D information

• Difficulties
– Uniform regions
– Half-occluded pixels
– Repeated patterns
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Pixel Dissimilarity
• Sum of Squared Differences of intensities (SSD)

• Sum of Absolute Differences of intensities (SAD)

• Zero-mean Normalized Cross-correlation (NCC)

ܦܵܵ ,ݔ ;ݕ ݀ ൌ  	
௫ᇲ,௬ᇲ ∈ ௫,௬

ሾܫ ,ᇱݔ ᇱݕ െ ᇱݔோሺܫ െ ݀, ᇱሻሿଶݕ

ܦܣܵ ,ݔ ;ݕ ݀ ൌ  ,ᇱݔሺܫ| ᇱሻݕ െ ோܫ ᇱݔ െ ݀, ᇱݕ | 
௫ᇲ,௬ᇲ ∈ ௫,௬
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Cost/Score Curve
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NCC



Cost/Score Curve
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Fronto-Parallel Assumption
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• The disparity is assumed to be the same in 
the entire matching window
– equivalent to assuming constant depth



Shiftable Windows

• Avoid having using 
matching windows 
that straddle two 
surfaces
– Disparity will not be 

constant for all pixels
• Shift the window 

around the 
reference pixel 
– Keep the one with 

min cost (max NCC)
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Rod-shaped Filters

• Instead of square windows aggregate cost 
in rod-shaped shiftable windows

• Search for one that minimizes the cost 
(assume that it is an iso-disparity curve)
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Alternative Dissimilarity Measures
• Rank and Census transforms 
• Rank transform:

– Define window containing R pixels around each pixel
– Count the number of pixels with lower intensities than center pixel in 

the window
– Replace intensity with rank (0..R-1)
– Compute SAD on rank-transformed 

images

• Census transform: 
– Use bit string, defined by neighbors, 

instead of scalar rank

• Robust against illumination changes
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Locally Adaptive Support

Apply weights to contributions of 
neighboring pixels according to similarity
and proximity
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Locally Adaptive Support

• Similarity in CIE Lab color space:

• Proximity: Euclidean distance

• Weights: 
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Locally Adaptive Support: Results
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