CS 532: 3D Computer Vision 3rd Set of Notes

Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215

Lecture Outline

- Fundamental Matrix estimation
- Binocular Stereo
 - Matching criteria

Based on slides by R. Hartley, A. Zisserman, M. Pollefeys, R. Szeliski and P. Fua

Projective Transformation and Invariance $\hat{\mathbf{x}} = \mathbf{H}\mathbf{x}, \, \hat{\mathbf{x}}' = \mathbf{H}' \, \mathbf{x}' \Longrightarrow \hat{\mathbf{F}} = \mathbf{H}'^{-T} \, \mathbf{F} \mathbf{H}^{-1}$

F invariant to transformations of projective 3-space

$$x = PX = (PH)(H^{-1}X) = \hat{P}\hat{X}$$
$$x' = P'X = (P'H)(H^{-1}X) = \hat{P}'\hat{X}$$

$$(P, P') \mapsto F$$
 unique
 $F \mapsto (P, P')$ not unique

que

canonical form

$$\begin{array}{l} P = [I \mid 0] \\ P' = [M \mid m] \end{array} \qquad F = [m]_{\times} M \qquad \left(F = [e']_{\times} P' P^{+} \right)$$

The Projective Reconstruction Theorem

If a <u>set of point correspondences</u> in two views <u>determine the</u> <u>fundamental matrix uniquely</u>, then the <u>scene and cameras</u> may be reconstructed from these correspondences alone, and any two such reconstructions from these correspondences are <u>projectively</u> <u>equivalent</u>

$$x_{i} \leftrightarrow x_{i}' \qquad (P_{1}, P_{1}', \{X_{1i}\}) \qquad (P_{2}, P_{2}', \{X_{2i}\})$$

$$P_{2} = P_{1}H^{-1} \qquad P_{2}' = P_{1}'H^{-1} \qquad X_{2i} = HX_{1i} \qquad (\text{except}: Fx_{i} = x_{i}'F = 0)$$

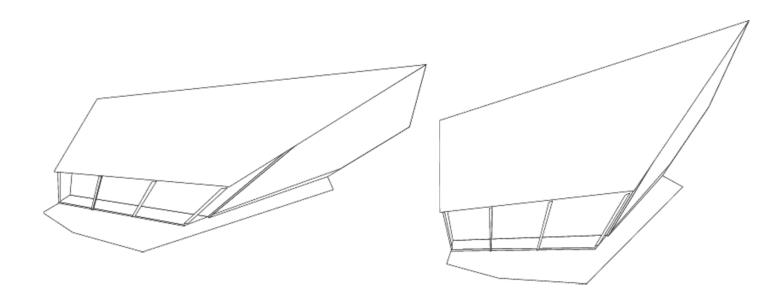
$$P_{2}(HX_{1i}) = P_{1}H^{-1}HX_{1i} = P_{1}X_{1i} = x_{i} = P_{2}X_{2i}$$

$$\Rightarrow \text{ along same ray of } P_{2}, \text{ idem for } P_{2}'$$

two possibilities: X_{2i} =HX_{1i}, or points along baseline

key result:

allows reconstruction from pair of uncalibrated images



Stratified Reconstruction

- (i) Projective reconstruction
- (ii) Affine reconstruction
- (iii) Metric reconstruction

Out of scope of CS 532

The Essential Matrix

~fundamental matrix for calibrated cameras (remove K)

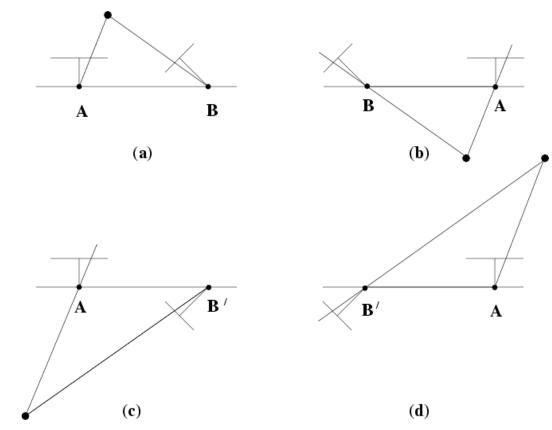
$$E = [t]_{\times} R = R[R^{T}t]_{\times}$$
$$\hat{x}'^{T} E \hat{x} = 0 \qquad (\hat{x} = K^{-1}x; \hat{x}' = K^{-1}x')$$
$$E = K'^{T} F K$$

5 d.o.f. (3 for R; 2 for t up to scale)

E is an essential matrix if and only if two singular values are equal (and the third=0)

 $E = Udiag(1,1,0)V^{T}$

Four Possible Solutions from E



Given E and setting the first camera matrix P = [I | 0], there are four possible solutions for P' (only one solution, however, where a reconstructed point is in front of both cameras)

Fundamental Matrix Estimation

Epipolar Geometry: Basic Equation $x'^{T} Fx = 0$

 $x' x f_{11} + x' y f_{12} + x' f_{13} + y' x f_{21} + y' y f_{22} + y' f_{23} + x f_{31} + y f_{32} + f_{33} = 0$

separate known from unknown

$$\begin{split} & [x'x, x'y, x', y'x, y'y, y', x, y, 1] [f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}]^{T} = 0 \\ & (data) & (unknowns) \\ & (linear) \end{split}$$

$$\begin{bmatrix} x'_{1} x_{1} & x'_{1} y_{1} & x'_{1} & y'_{1} x_{1} & y'_{1} y_{1} & y'_{1} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x'_{n} x_{n} & x'_{n} y_{n} & x'_{n} & y'_{n} x_{n} & y'_{n} y_{n} & y'_{n} & x_{n} & y_{n} & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$

$$Af = 0$$

The Singularity Constraint e'^T F = 0 Fe = 0 det F = 0 rank F = 2

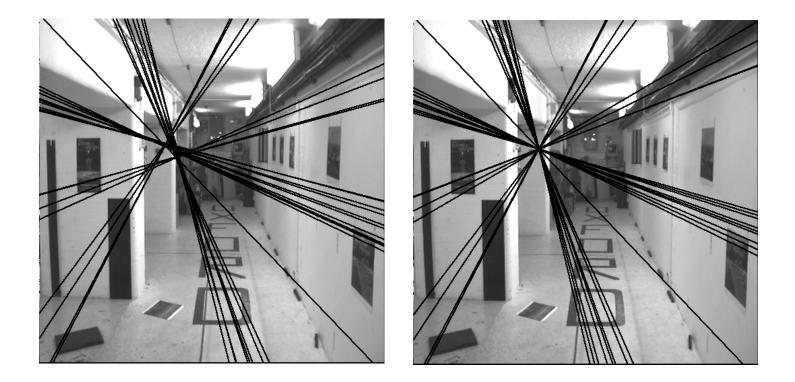
SVD from linearly computed F matrix (rank 3)

$$\mathbf{F} = \mathbf{U} \begin{bmatrix} \boldsymbol{\sigma}_1 & & \\ & \boldsymbol{\sigma}_2 & \\ & & \boldsymbol{\sigma}_3 \end{bmatrix} \mathbf{V}^{\mathrm{T}} = \mathbf{U}_1 \boldsymbol{\sigma}_1 \mathbf{V}_1^{\mathrm{T}} + \mathbf{U}_2 \boldsymbol{\sigma}_2 \mathbf{V}_2^{\mathrm{T}} + \mathbf{U}_3 \boldsymbol{\sigma}_3 \mathbf{V}_3^{\mathrm{T}}$$

Compute closest rank-2 approximation $\min \|\mathbf{F} - \mathbf{F}'\|_{F}$

$$\mathbf{F'} = \mathbf{U} \begin{bmatrix} \boldsymbol{\sigma}_1 & & \\ & \boldsymbol{\sigma}_2 & \\ & & \boldsymbol{0} \end{bmatrix} \mathbf{V}^{\mathrm{T}} = \mathbf{U}_1 \boldsymbol{\sigma}_1 \mathbf{V}_1^{\mathrm{T}} + \mathbf{U}_2 \boldsymbol{\sigma}_2 \mathbf{V}_2^{\mathrm{T}}$$

The Singularity Constraint



The Minimum Case - 7 Point Correspondences

$$\begin{bmatrix} x'_{1} x_{1} & x'_{1} y_{1} & x'_{1} & y'_{1} x_{1} & y'_{1} y_{1} & y'_{1} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x'_{7} x_{7} & x'_{7} y_{7} & x'_{7} & y'_{7} x_{7} & y'_{7} y_{7} & y'_{7} & x_{7} & y_{7} & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$

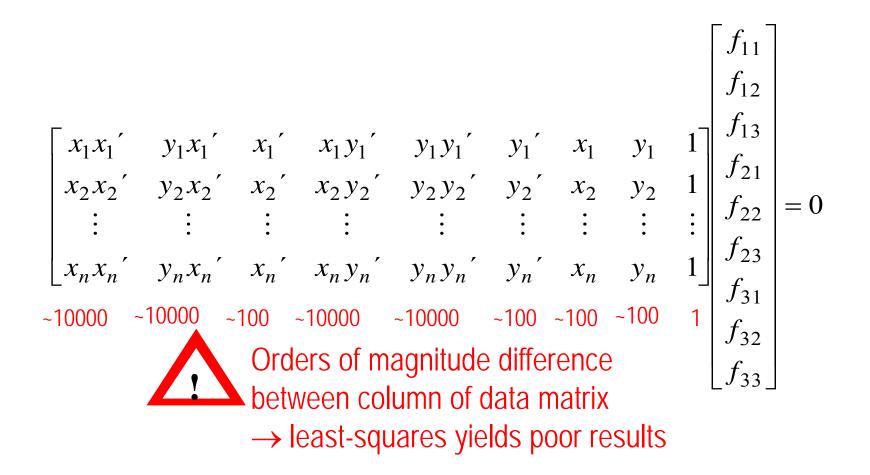
$$A = U_{7x7} \operatorname{diag}(\sigma_{1}, \dots, \sigma_{7}, \mathbf{0}, \mathbf{0}) \mathbf{V}_{9x9}^{\mathsf{T}}$$

$$\Rightarrow A[\mathbf{V}_{8}\mathbf{V}_{9}] = \mathbf{0}_{9x2}$$

$$x_{i}^{\mathsf{T}}(\mathbf{F}_{1} + \lambda \mathbf{F}_{2}) \mathbf{x}_{i} = \mathbf{0}, \forall i = 1...7$$

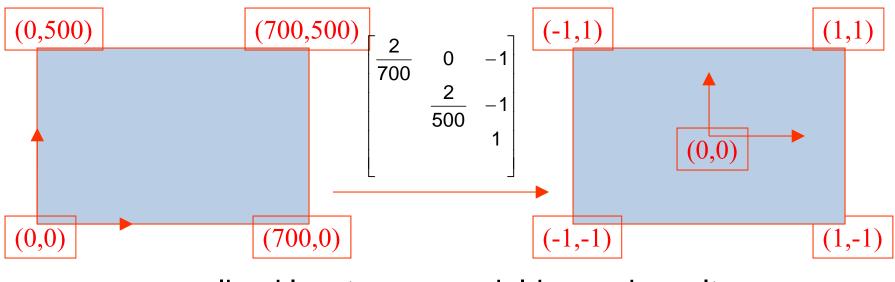
One parameter family of solutions – results in 1 or 3 real solutions but $F_1+\lambda F_2$ not automatically rank 2

The NOT Normalized 8-point Algorithm



The Normalized 8-point Algorithm

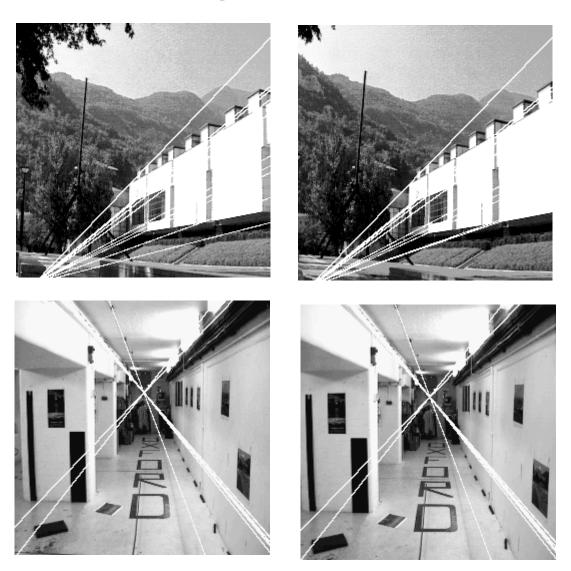
Transform image to [-1,1]x[-1,1]



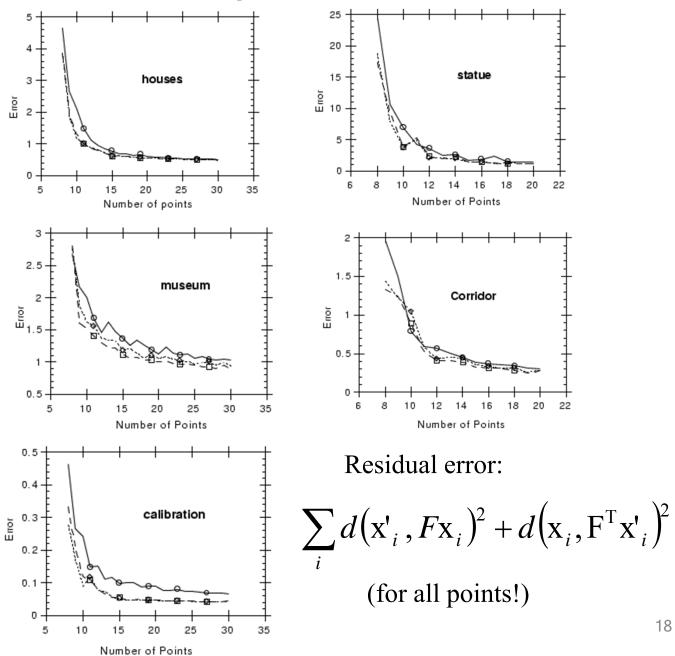
normalized least squares yields good results

Some Experiments

Some Experiments



Some Experiments



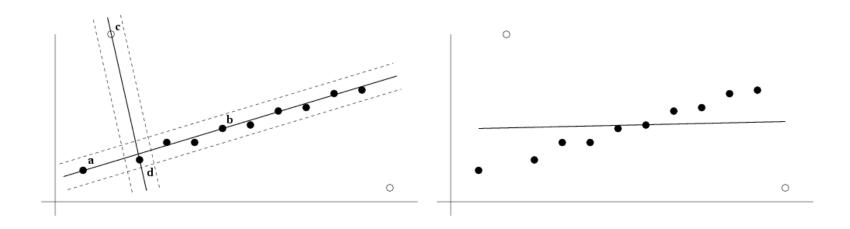
18

Recommendations:

- 1. Do not use unnormalized algorithms
- 2. Quick and easy to implement: 8-point normalized
- 3. Better: enforce rank-2 constraint during minimization
- 4. Best: Maximum Likelihood Estimation (minimal parameterization, sparse implementation)

Robust Estimation

• What if set of matches contains gross outliers?



RANSAC

Objective

Robust fit of model to data set S which contains outliers <u>Algorithm</u>

- (i) Randomly select a sample of *s* data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold *t* of the model. The set S_i is the consensus set of samples and defines the inliers of S.
- (iii) If the subset of S_i is greater than some threshold T, reestimate the model using all the points in S_i and terminate
- (iv) If the size of S_i is less than T, select a new subset and repeat the above.
- (v) After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i

How many samples?

- Choose t so probability for inlier is α (e.g. 0.9)
 - Or empirically
- Choose N so that, with probability *p*, at least one random sample is free from outliers. e.g. *p* =0.99

$$(1 - (1 - e)^{s})^{N} = 1 - p N = \log(1 - p) / \log(1 - (1 - e)^{s})$$

_		proportion of outliers e									
	S	5%	10%	20%	25%	30%	40%	50%			
_	2	2	3	5	6	7	11	17			
	3	3	4	7	9	11	19	35			
	4	3	5	9	13	17	34	72			
	5	4	6	12	17	26	57	146			
	6	4	7	16	24	37	97	293			
	7	4	8	20	33	54	163	588			
	8	5	9	26	44	78	272	1177			

Acceptable consensus set?

• Typically, terminate when inlier ratio reaches expected ratio of inliers

$$T = (1 - e)n$$

Adaptively determining the number of samples

e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2

- $N = \infty$, sample_count = 0
- While N>sample_count repeat
 - Choose a sample and count the number of inliers
 - Set e=1-(number of inliers)/(total number of points)
 - Recompute *N* from *e*
 - Increment the sample_count by 1
- Terminate

$$N = \log(1-p) / \log(1-(1-e)^{s})$$

RANSAC for F Estimation

Step 1. Extract features

Step 2. Compute a set of potential matches

Step 3. do

Step 3.1 select minimal sample (i.e. 7 matches)

(generate hypothesis)

Step 3.3 determine inliers (verify hypothesis)

until p(#inliers,#samples)>95% or 99%

Step 4. Compute F based on all inliers

Step 3.2 compute solution(s) for F

Step 5. Look for additional matches

Step 6. Refine F based on all correct matches

$$p = 1 - (1 - \left(\frac{\#inliers}{\#matches}\right)^7)^{\#samples}$$

#inliers	90%	80%	70%	60%	50%
#samples	5	13	35	106	382

Finding more matches

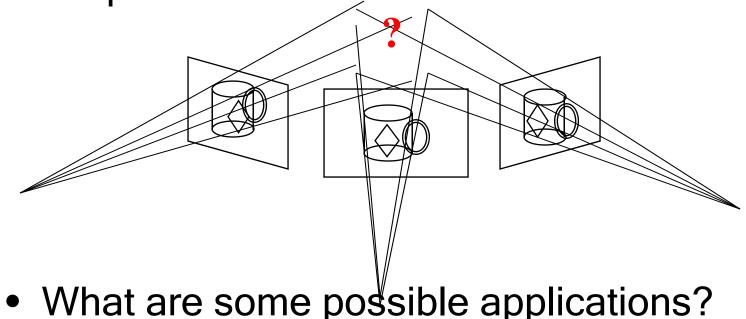
restrict search range to neighborhood of epipolar line (±1.5 pixels) relax disparity restriction (along epipolar line)

Degenerate Cases

- Degenerate cases
 - Planar scene
 - Pure rotation
- No unique solution
 - Remaining DOF filled by noise
 - Use simpler model (e.g. homography)
- Model selection (Torr et al., ICCV'98, Kanatani, Akaike)
 - Compare H and F according to expected residual error (compensate for model complexity)

Slides by Rick Szeliski, Pascal Fua and P. Mordohai

 Given two or more images of the same scene or object, compute a representation of its shape

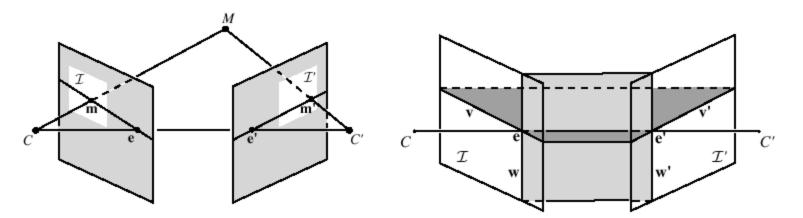


- Given two or more images of the same scene or object, compute a representation of its shape
- What are some possible representations?
 - depth maps
 - volumetric models
 - 3D surface models
 - planar (or offset) layers

- What are some possible algorithms?
 - match "features" and interpolate
 - match edges and interpolate
 - match all pixels with windows (coarse-fine)
 - use optimization:
 - iterative updating
 - dynamic programming
 - energy minimization (regularization, stochastic)
 - graph algorithms

Rectification

- Project each image onto same plane, which is parallel to the baseline
- Resample lines (and shear/stretch) to place lines in correspondence, and minimize distortion



• Take rectification for granted in this course

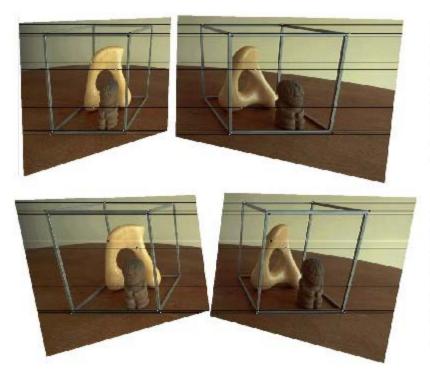
Rectification

(a) Original image pair overlayed with several epipolar lines.

BAD!

(b) Image pair transformed by the specialized projective mapping \mathbf{H}_p and \mathbf{H}'_p . Note that the epipolar lines are now parallel to each other in each image.

Rectification



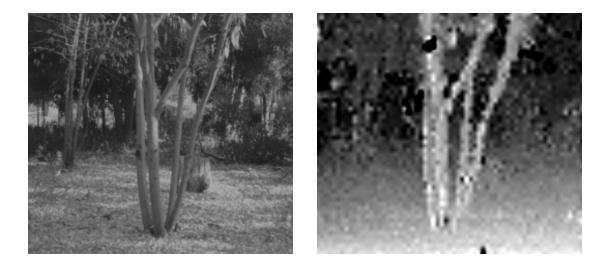
GOOD!

(c) Image pair transformed by the similarity H_r and H'_r . Note that the image pair is now rectified (the epipolar lines are horizontally aligned).

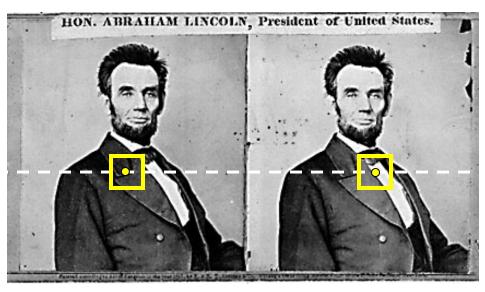
(d) Final image rectification after shearing transform H_s and H'_s . Note that the image pair remains rectified, but the horizontal distortion is reduced.

Finding Correspondences

- Apply feature matching criterion at *all* pixels simultaneously
- Search only over epipolar lines (many fewer candidate positions)



Basic Stereo Algorithm



For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

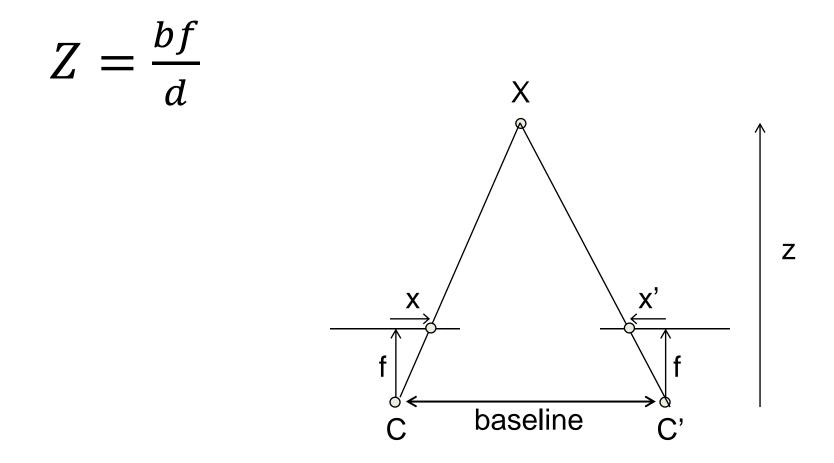
Disparity

 Disparity d is the difference between the x coordinates of corresponding pixels in the left and right image

$$d=x_L-x_R$$

• Disparity is inversely proportional to depth $Z = \frac{bf}{d}$

Stereo Reconstruction

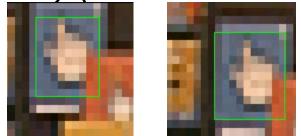


Finding Correspondences

- How do we determine correspondences?
 - block matching or SSD (sum squared differences)

$$SSD(x, y; d) = \sum_{(x', y') \in \mathbb{N}(x, y)} [I_L(x', y') - I_R(x' - d, y')]^2$$

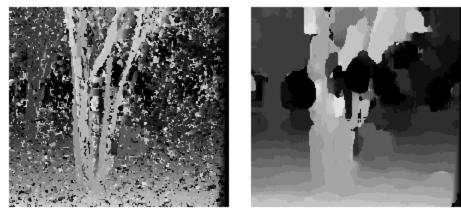
- d is the disparity (horizontal motion)



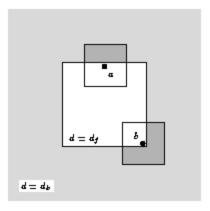
• How big should the neighborhood be?

Neighborhood size

- Smaller neighborhood: more details
- Larger neighborhood: fewer isolated mistakes



w = 3



Challenges

- Ill-posed inverse problem
 - Recover 3-D structure from 2-D information
- Difficulties
 - Uniform regions
 - Half-occluded pixels
 - Repeated patterns

Pixel Dissimilarity

• Sum of Squared Differences of intensities (SSD)

$$SSD(x, y; d) = \sum_{(x', y') \in N(x, y)} [I_L(x', y') - I_R(x' - d, y')]^2$$

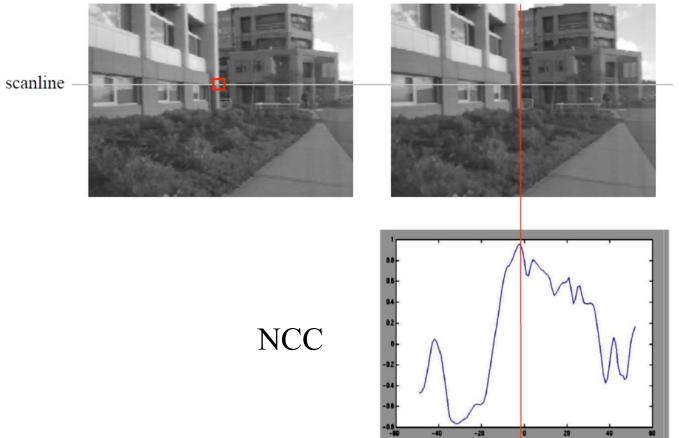
• Sum of Absolute Differences of intensities (SAD)

$$SAD(x, y; d) = \sum_{(x', y') \in \mathbb{N}(x, y)} |I_L(x', y') - I_R(x' - d, y')|$$

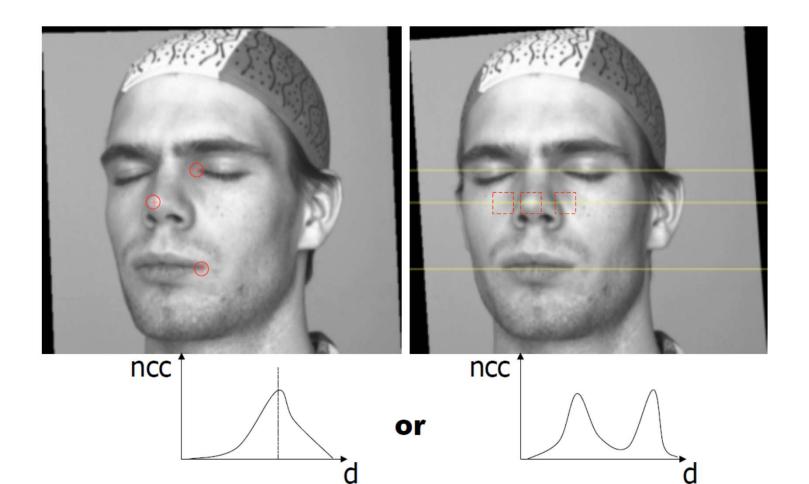
• Zero-mean Normalized Cross-correlation (NCC)

$$NCC(x, y, d) = \frac{\sum_{i \in W} (I_L(x_i, y_i) - \mu_L) (I_R(x_i - d, y_i) - \mu_R)}{\sigma_L \sigma_R}$$

Cost/Score Curve

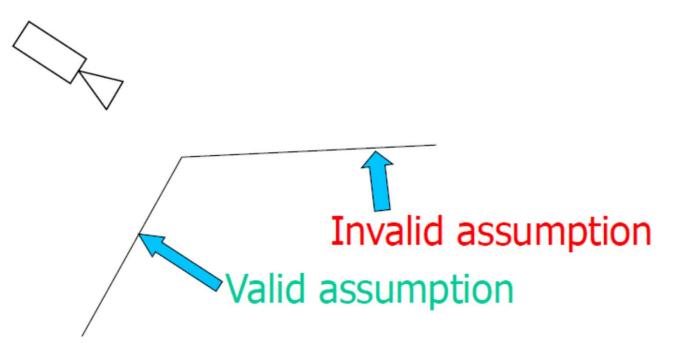


Cost/Score Curve



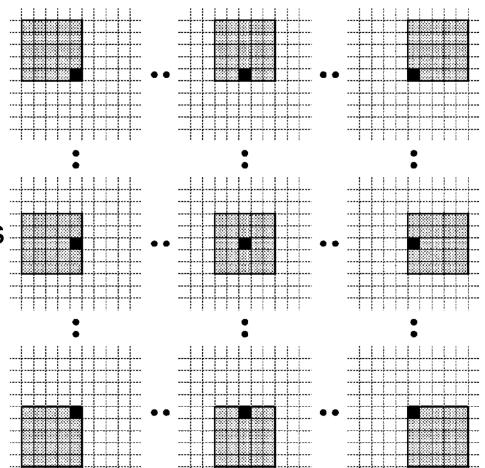
Fronto-Parallel Assumption

- The disparity is assumed to be the same in the entire matching window
 - equivalent to assuming constant depth



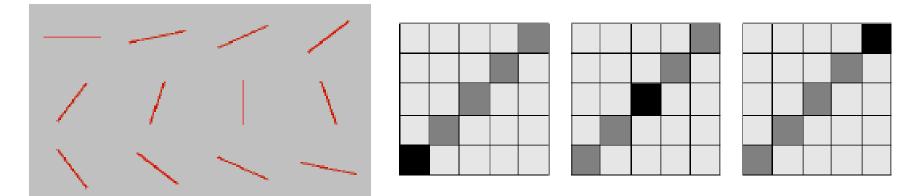
Shiftable Windows

- Avoid having using matching windows that straddle two surfaces
 - Disparity will not be constant for all pixels
- Shift the window around the reference pixel
 - Keep the one with min cost (max NCC)



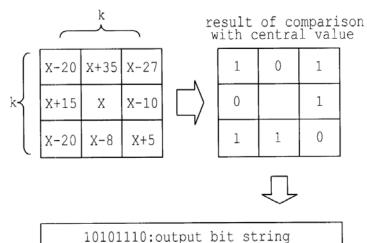
Rod-shaped Filters

- Instead of square windows aggregate cost in rod-shaped shiftable windows
- Search for one that minimizes the cost (assume that it is an iso-disparity curve)



Alternative Dissimilarity Measures

- Rank and Census transforms
- Rank transform:
 - Define window containing R pixels around each pixel
 - Count the number of pixels with lower intensities than center pixel in the window
 - Replace intensity with rank (0..R-1)
 - Compute SAD on rank-transformed images
- Census transform:
 - Use bit string, defined by neighbors, instead of scalar rank
- Robust against illumination changes



Locally Adaptive Support

Apply weights to contributions of neighboring pixels according to similarity and proximity

(a) left support win- (b) right support win- (c) color difference dow dow between (a) and (b)

Locally Adaptive Support

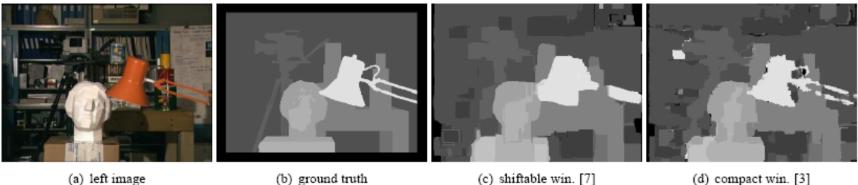
• Similarity in CIE Lab color space:

$$\Delta c_{pq} = \sqrt{(L_p - L_q)^2 + (a_p - a_q)^2 + (b_p - b_q)^2}$$

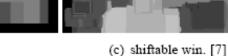
• Proximity: Euclidean distance

• Weights:
$$w(p,q) = k \cdot \exp\left(-\left(\frac{\Delta c_{pq}}{\gamma_c} + \frac{\Delta g_{pq}}{\gamma_p}\right)\right)$$

Locally Adaptive Support: Results



(a) left image



(b) ground truth

(f) Bay. diff. [19]

(e) variable win. [4]

(g) our result

(h) bad pixels (error > 1)