
CS 532: 3D Computer Vision 
2nd Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215
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Lecture Outline

• 2D projective transformations
– Homographies

• Robust estimation
– RANSAC

• Radial distortion
• Two-view geometry

Based on slides by R. Hartley, A. Zisserman, 
M. Pollefeys and S. Seitz
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Projective Transformations in 2D

A projectivity is an invertible mapping h from P2 to itself 
such that three points x1,x2,x3 lie on the same line if and 
only if h(x1),h(x2),h(x3) do.

Definition:

A mapping h:P2P2 is a projectivity if and only if there 
exist a non-singular 3x3 matrix H such that for any point 
in P2 reprented by a vector x it is true that h(x)=Hx

Theorem:

Definition: Projective transformation
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Mapping between planes

central projection may be expressed by x’=Hx
(application of theorem)
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Removing Projective Distortion
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select four points in a plane with known coordinates

(linear in hij)

(2 constraints/point, 8DOF  4 points needed)

Remarks: no calibration at all necessary, 
better ways to compute (see later)
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A Hierarchy of Transformations
Projective linear group

Affine group (last row (0,0,1))
Euclidean group (upper left 2x2 orthogonal)

Oriented Euclidean group (upper left 2x2 det 1)

Alternatively, characterize transformation in terms of elements 
or quantities that are preserved or invariant

e.g. Euclidean transformations leave distances unchanged
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Class I: Isometries
(iso=same, metric=measure)
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special cases: pure rotation, pure translation
3DOF (1 rotation, 2 translation) 

Invariants: length, angle, area

7



Class II: Similarities
(isometry + scale)
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also know as equi-form (shape preserving)
metric structure = structure up to similarity (in literature)

4DOF (1 scale, 1 rotation, 2 translation) 

Invariants: ratios of length, angle, ratios of areas, 
parallel lines
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Class III: Affine Transformations
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Invariants: parallel lines, ratios of parallel lengths,
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Class VI: Projective Transformations
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Action is non-homogeneous over the plane
8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity) 

Invariants: cross-ratio of four points on a line
(ratio of ratios)

 T21,v vv
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Overview of Transformations
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Projective
8dof

Affine
6dof

Similarity
4dof

Euclidean
3dof

Concurrency, collinearity, 
order of contact (intersection, 
tangency, inflection, etc.), 
cross ratio

Parallellism, ratio of areas, 
ratio of lengths on parallel 
lines (e.g midpoints), linear 
combinations of vectors 
(centroids). 
The line at infinity l∞

Ratios of lengths, angles.
The circular points I,J

lengths, areas.
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Homework 1

Warp the basketball 
court from this image to 
a new image so that it 
appears as if the new 
image was taken from 
directly above

What are we missing?
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Image Warping

Slides by Steve Seitz
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Image Transformations
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Parametric (Global) Warping

• Transformation T is a coordinate-changing machine:
p’ = T(p)

• What does it mean that T is global?
– It is the same for any point p
– It can be described by just a few numbers (parameters)

• T is represented as a matrix (see prev. slides):
p’ = M*p
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Image Warping

Given a coordinate transform (x’,y’) = h(x,y) 
and a source image f(x,y), how do we 
compute a transformed image g(x’,y’) = 
f(T(x,y))?
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Forward Warping

Send each pixel f(x,y) to its corresponding 
location (x’,y’) = T(x,y) in the second image

Q: what if the pixel lands “between” two pixels?
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Forward Warping

Send each pixel f(x,y) to its corresponding location 
(x’,y’) = T(x,y) in the second image

Q: what if the pixel lands “between” two pixels?
A: Distribute color among neighboring pixels 
(splatting)
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Inverse Warping

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x’,y’) in the first image

• Q: what if pixel comes from “between” two 
pixels?

19



Inverse Warping

• Get each pixel g(x’,y’) from its corresponding location 
(x,y) = T-1(x’,y’) in the first image

• Q: what if pixel comes from “between” two pixels?
• A: interpolate color value from neighbors 

– Bilinear interpolation typically used
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Bilinear Interpolation
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Forward vs. Inverse Warping

• Which is better?
• ... 

22



Parameter Estimation

Slides by R. Hartley, A. Zisserman
and M. Pollefeys
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Homography: 
Number of Measurements Required

• At least as many independent equations as 
degrees of freedom required

• Example: Hxx'
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Approximate solutions

• Minimal solution
4 points yield an exact solution for H

• More points
– No exact solution, because 

measurements are inexact (“noise”)
– Search for “best” according to some cost 

function
– Algebraic or geometric/statistical cost
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Direct Linear Transformation (DLT)
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Direct Linear Transformation (DLT)

Equations are linear in h
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Only 2 of 3 are linearly independent 
(indeed, 2 eq/pt)
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Direct Linear Transformation (DLT)
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• Holds for any homogeneous 
representation, e.g. (xi’,yi’,1)
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Direct Linear Transformation (DLT)

• Solving for H 0Ah 
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Size of A is 8x9, but rank 8

Trivial solution is h=09
T is not interesting

1-D null-space yields solution of interest,
pick for example the one with 1h 
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Direct Linear Transformation (DLT)

• Over-determined solution

No exact solution because of inexact measurement
i.e. “noise”
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Find approximate solution
- Additional constraint needed to avoid 0, e.g.
- not possible, so minimize 

1h 
Ah0Ah 
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DLT Algorithm
Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’}, 
determine the 2D homography matrix H such that xi’=Hxi

Algorithm
(i) For each correspondence xi ↔xi’ compute Ai. Usually 

only two first rows needed.

(ii) Assemble n 2x9 matrices Ai into a single 2nx9 matrix A
(iii) Obtain SVD of A. Solution for h is last column of V
(iv) Determine H from h
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Inhomogeneous solution





















'
'

h~
''000'''

'''''000

ii

ii

iiiiiiiiii

iiiiiiiiii

xw
yw

xyxxwwwywx
yyyxwwwywx

Since h can only be computed up to scale, 
pick hj=1, e.g. h9=1, and solve for 8-vector h~

Solve using Gaussian elimination (4 points) or 
using linear least-squares (more than 4 points)
However, if h9=0 this approach fails 
Also poor results if h9 close to zero
Therefore, not recommended
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Normalizing Transformations

• Since DLT is not invariant to transformations, 
what is a good choice of coordinates?
e.g.
– Translate centroid to origin
– Scale to a      average distance to the origin
– Independently on both images
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Importance of Normalization
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orders of magnitude difference!

Monte Carlo simulation 
for identity computation based on 5 points
(not normalized ↔ normalized)
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Normalized DLT Algorithm
Objective

Given n≥4 2D to 2D point correspondences {xi↔xi’}, 
determine the 2D homography matrix H such that xi’=Hxi

Algorithm
(i) Normalize points  
(ii) Apply DLT algorithm to 
(iii) Denormalize solution

,x~x~ ii 
inormiinormi xTx~,xTx~ 

norm
-1

norm TH~TH 
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RANSAC

Slides by R. Hartley, A. Zisserman
and M. Pollefeys
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Robust Estimation

• What if set of matches contains gross outliers?
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RANSAC
Objective

Robust fit of model to data set S which contains outliers
Algorithm
(i) Randomly select a sample of s data points from S and 

instantiate the model from this subset.
(ii) Determine the set of data points Si which are within a 

distance threshold t of the model.  The set Si is the 
consensus set of samples and defines  the inliers of S.

(iii) If the subset of Si is greater than some threshold T, re-
estimate the model using all the points in Si and terminate

(iv) If the size of Si is less than T, select a new subset and 
repeat the above.

(v) After N trials the largest consensus set Si is selected, and 
the model is re-estimated using all the points in the 
subset Si
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How Many Samples?

Choose N so that, with probability p, at least one random 
sample is free from outliers. e.g. p=0.99

    sepN  11log/1log

   pe
Ns  111

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177
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Acceptable Consensus Set

• Typically, terminate when inlier ratio reaches expected 
ratio of inliers

 neT  1
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Adaptively Determining the Number of Samples

e is often unknown a priori, so pick worst case, e.g. 50%, 
and adapt if more inliers are found, e.g. 80% would yield 
e=0.2 

– N=∞, sample_count =0
– While N >sample_count repeat

• Choose a sample and count the number of inliers
• Set e=1-(number of inliers)/(total number of points)
• Recompute N from e
• Increment the sample_count by 1

– Terminate
     sepN  11log/1log
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Other robust algorithms

• RANSAC maximizes number of inliers
• LMedS minimizes median error

• Not recommended: case deletion, iterative 
least-squares, etc.
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Automatic Computation of H
Objective

Compute homography between two images
Algorithm
(i) Interest points: Compute interest points in each image
(ii) Putative correspondences: Compute a set of interest 

point matches based on some similarity measure
(iii) RANSAC robust estimation: Repeat for N samples

(a) Select 4 correspondences and compute H
(b) Calculate the distance d for each putative match
(c) Compute the number of inliers consistent with H (d<t)
Choose H with most inliers 

(iv) Optimal estimation: re-estimate H from all inliers by 
minimizing ML cost function with Levenberg-Marquardt

(v) Guided matching: Determine more matches using 
prediction by computed H

Optionally iterate last two steps until convergence 43



Determine Putative Correspondences

• Compare interest points
Similarity measure:
– SAD, SSD, ZNCC in small neighborhood

• If motion is limited, only consider interest points with 
similar coordinates

44



Example: robust computation

Interest points
(500/image)
(640x480)

Putative correspondences (268)
(Best match,SSD<20,±320)
Outliers (117)
(t=1.25 pixel; 43 iterations)

Inliers (151)

Final inliers (262)

#in 1-e adapt. N

6 2% 20M
10 3% 2.5M
44 16% 6,922
58 21% 2,291
73 26% 911

151 56% 43
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Radial Distortion and 
Undistortion

Slides by R. Hartley, A. Zisserman
and M. Pollefeys
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short and long focal length

Radial Distortion
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Correction of distortion

Choice of the distortion function and center

Computing the parameters of the distortion function
(i) Minimize with additional unknowns
(ii) Straighten lines
(iii) …
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Typical Undistortion Model
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Why Undistort?



Two-View Geometry

Slides by R. Hartley, A. Zisserman and M. Pollefeys
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(i) Correspondence geometry: Given an image point x in the first 
image, how does this constrain the position of the corresponding 
point x’ in the second image?

(ii) Camera geometry (motion): Given a set of corresponding image 
points {xi ↔x’i}, i=1,…,n, what are the cameras P and P’ for the 
two views?

(iii) Scene geometry (structure): Given corresponding image points 
xi ↔x’i and cameras P, P’, what is the position of (their pre-
image) X in space?

Three questions:
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C, C’, x, x’ and X are coplanar

The Epipolar Geometry
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What if only C,C’,x are known?

The Epipolar Geometry
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All points on  project on l and l’
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The Epipolar Geometry



Family of planes  and lines l and l’ 
Intersection in e and e’
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The Epipolar Geometry



epipoles e, e’
= intersection of baseline with image plane 
= projection of projection center in other image
= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)
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The Epipolar Geometry



Example: Converging Cameras
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(simple for stereo  rectification)

Example: Motion Parallel to Image Plane

60



e

e’

Example: Forward Motion
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The Fundamental Matrix F

algebraic representation of epipolar geometry 

l'x 

we will see that mapping is a (singular) correlation 
(i.e. projective mapping from points to lines) 
represented by the fundamental matrix F
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correspondence condition

0Fxx'T 

The fundamental matrix satisfies the condition that for 
any pair of corresponding points x↔x’ in the two 
images

 0l'x'T 
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The Fundamental Matrix F



  λCxPλX    IPP 

  
 PP'e'F

xPP'CP'l 

(note: doesn’t work for C=C’  F=0)

xP

 λX
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The Fundamental Matrix F



F is the unique 3x3 rank 2 matrix that 
satisfies x’TFx=0 for all x↔x’

(i) Transpose: if F is fundamental matrix for (P,P’), then FT is 
fundamental matrix for (P’,P)

(ii) Epipolar lines: l’=Fx & l=FTx’
(iii) Epipoles: on all epipolar lines, thus e’TFx=0, x e’TF=0, 

similarly Fe=0
(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)
(v) F is a correlation, projective mapping from a point x to a line 

l’=Fx (not a proper correlation, i.e. not invertible)
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The Fundamental Matrix F



Two View Geometry Computation: Linear Algorithm

0Fxx'T 

separate known from unknown

0'''''' 333231232221131211  fyfxffyyfyxfyfxyfxxfx
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(linear)
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For every match (m,m´):
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Benefits from having F

• Given a pixel in one image, the 
corresponding pixel has to lie on epipolar 
line

• Search space reduced from 2-D to 1-D
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simplify stereo matching 
by warping the images

Apply projective transformation so that epipolar lines
correspond to horizontal scanlines

e

e

map epipole e to (1,0,0)

try to minimize image distortion

problem when epipole in (or close to) the image

He
0
0
1














Image Pair Rectification
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Planar Rectification

Bring two views 
to standard stereo setup
(moves epipole to )
(not possible when in/close to image)

(standard approach)
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