
CS 532: 3D Computer Vision
14th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1

Lecture Outline

• Triangulating a Polygon (cont. from Week 11)

• Voronoi diagrams
• Delaunay triangulations

– David M. Mount, CMSC 754: Computational
Geometry lecture notes, Department of Computer
Science, University of Maryland, Spring 2012

• Lectures 11, 12 and 13

– Slides by:
• M. van Kreveld (Utrecht University)

2

Triangulating a Polygon (cont.
from Week 11)

Slides by M. van Kreveld (Utrecht
University)

3

Two-Ears for Triangulation

• Using the two-ears
theorem: (an ear
consists of three
consecutive vertices u,
v, w where uw is a
diagonal)

• Find an ear, cut it off
with a diagonal,
triangulate the rest
iteratively

4

Overview

• A simple polygon is y-
monotone iff any horizontal
line intersects it in a connected
set (or not at all)

• Use plane sweep to partition
the polygon into y-monotone
polygons

• Then triangulate each y-
monotone polygon

5

Monotone Polygons

• A y-monotone polygon has a
top vertex, a bottom vertex,
and two y-monotone chains
between top and bottom as its
boundary

• Any simple polygon with one
top vertex and one bottom
vertex is y-monotone

6

Vertex Types

• What types of vertices
does a simple polygon
have?
– start
– stop
– split
– merge
– regular

• … imagining a sweep line
going top to bottom

7

Sweep Ideas

• Find diagonals from each
merge vertex down, and
from each split vertex up

• A simple polygon with no
split or merge vertices can
have at most one start and
one end vertex, so it is y-
monotone

8

Sweep Ideas

9

Sweep Ideas

• Where can a diagonal
from a split vertex go?

• Perhaps the upper
endpoint of the edge
immediately left of the
merge vertex?

10

Sweep Ideas

• Where can a diagonal
from a split vertex go?

• Perhaps the upper
endpoint of the edge
immediately left of the
merge vertex?

11

Sweep Ideas

• Where can a diagonal
from a split vertex go?

• Perhaps the upper
endpoint of the edge
immediately left of the
merge vertex?

12

Sweep Ideas

• Where can a diagonal
from a split vertex go?

• Perhaps the last vertex
passed in the same
component?

13

Sweep Ideas

• Where can a diagonal
from a split vertex go?

• Perhaps the last vertex
passed in the same
component?

14

Helpers of Edges

• The helper of an edge e
is the lowest vertex v
above the sweep line
such that the horizontal
line segment connecting
e and v is inside the
polygon

• Note that helper(ej) can
be the upper endpoint of
ej itself

15

Status of Sweep

• The status is the set of
edges intersecting the
sweep line that have the
polygon to their right,
sorted from left to right

• Each edge has a helper:
the last vertex passed in
that component

16

Status Structure, Event List

• The status structure stores all edges that
have the polygon to the right, with their
helper, sorted from left to right in the
leaves of a balanced binary search tree

• The events happen only at the vertices:
sort them by y-coordinate and put them in
a list (or array, or tree)

17

Main Algorithm

• Initialize the event list (all vertices sorted
by decreasing y-coordinate) and the status
structure (empty)

• While there are still events in the event list,
remove the first (topmost) one and handle
it

18

Event Handling

• Start vertex v:
– Insert the

counterclockwise
incident edge in T with
v as the helper

19

Event Handling

• End vertex v:
– Delete the clockwise

incident edge and its
helper from T

20

Event Handling

• Regular vertex v:
– If the polygon is to the

right of the two incident
edges, then replace the
upper edge by the lower
edge in T, and make v
the helper

– If the polygon is to the
left of the two incident
edges, then find the
edge e directly left of v,
and replace its helper by
v

21

Event Handling

• Split vertex v:
– Find the edge e

directly left of v, and
choose as a diagonal
the edge between its
helper and v

– Replace the helper of
e by v

– Insert the edge
counterclockwise from
v in T, with v as its
helper

22

Event Handling

• Merge vertex v:
– Remove the edge

clockwise from v from
T

– Find the edge e
directly left of v, and
replace its helper by v

23

Event Handling

• Diagonal insertion
– When we reach vertex

vm that replaces vi as
the helper of ej, check
whether old helper is a
merge vertex

– If yes, add diagonal
between old and new
helper

24

Efficiency

• Sorting all events by y-
coordinate takes O(n log n)
time

• Every event takes O(log n)
time, because it only
involves querying,
inserting and deleting in T

25

More Sweeping

• With an upward sweep in
each subpolygon, we can
find a diagonal down from
every merge vertex
(which is a split vertex for
an upward sweep!)

• This makes all
subpolygons y-monotone

26

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

27

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

28

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

29

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

30

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

31

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

32

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

33

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

34

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

35

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

36

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

37

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

38

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

39

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

40

Triangulating a Monotone Polygon

• How to triangulate a
y-monotone polygon?

41

The Algorithm

• Sort the vertices top-to-bottom by a merge
of the two chains

• Initialize a stack. Push the first two vertices
• Take the next vertex v, and triangulate as

much as possible, top-down, while
popping the stack

• Push v onto the stack

42

Result

• Theorem: A simple polygon with n vertices
can be partitioned into y-monotone pieces in
O(n log n) time

• Theorem: A monotone polygon with n
vertices can be triangulated O(n) time

• Can we immediately conclude:
• A simple polygon with n vertices can be

triangulated in O(n log n) time ???

43

Result

• We need to argue that all y-monotone polygons that we
will triangulate have O(n) vertices together

• Initially we had n edges. We add at most n-3 diagonals in
the sweeps. These diagonals are used on both sides as
edges. So all monotone polygons together have at most
3n-6 edges, and therefore at most 3n-6 vertices

• Hence we can conclude that triangulating all monotone
polygons together takes only O(n) time

• Theorem: A simple polygon with n vertices can be
triangulated O(n log n) time

44

Voronoi Diagrams

Slides by M. van Kreveld
(Utrecht University)

45

Voronoi Diagram

• Given ambulance
posts, where should
the ambulance come
from in case of an
emergency
somewhere?

46

Voronoi Diagram

• Given ambulance
posts, where should
the ambulance come
from in case of an
emergency
somewhere?

47

Voronoi Diagram

Definition
• The Voronoi diagram

induced by a set of
points (called sites):

• Subdivision of the
plane where the faces
correspond to the
regions where one
site is closest

48

Spatial Interpolation

• Suppose we tested
the soil at a number of
sample points and
classified the results

49

Spatial Interpolation

• Suppose we tested
the soil at a number of
sample points and
classified the results

50

Spatial Interpolation

• Suppose we tested
the soil at a number of
sample points and
classified the results

51

Spatial Interpolation

• Suppose we
measured lead
concentration at a
number of sample
points

52

Spatial Interpolation

• Suppose we
measured lead
concentration at a
number of sample
points

53

Spatial Interpolation

• Suppose we
measured lead
concentration at a
number of sample
points (natural
neighbor
interpolation)

54

Spatial Interpolation

Natural neighbor interpolation

• Let AT = A1+A2+· · ·+A5

• The interpolated value is:
భ

13+మ

11 ⋯ ఱ

20

55

Observations

• Edges are parts of
bisectors

• Some edges are half-
infinite

• Some cells are
unbounded

56

Every Voronoi cell is the
intersection of n−1 half-
planes, if there are n
sites
=> all cells are convex
and have up to n−1
edges in the boundary

57

Structure

• The Voronoi diagram of n sites has the
following structure:

• If all n sites lie on a line, then the Voronoi
cell boundaries are parallel lines, so the
“graph” is disconnected

• Otherwise, the Voronoi cell boundaries
form a connected “graph”

58

Complexity

• Theorem: The Voronoi diagram on f sites in
the plane has at most 2n−5 Voronoi vertices
and at most 3n−6 Voronoi edges (including
lines and half-lines)

• Proof: If the sites are colinear, then it is trivial

• Otherwise, we will use Euler’s formula for
planar graphs

59

Complexity

• Euler’s formula for planar graphs: a
connected planar graph with nv vertices, ne
edges, and nf faces satisfies:

nv−ne+nf = 2

• However, a Voronoi diagram is not a
proper graph

60

Complexity

We make it proper by connecting
all half-infinite edges to a new
vertex v∞

nv = no. of Voronoi vertices VV +1

ne = no. of Voronoi edges VE

nf = no. of Voronoi cells = n, the
number of sites

61

Complexity

• Substitution in Euler’s formula nv−ne+nf = 2
gives:

(VV +1)−VE+n = 2
• Every edge is incident to exactly 2 vertices, and

every vertex is incident to at least 3 edges

• Sum-of-degree-of-all-vertices = 2 VE
• Sum-of-degree-of-all-vertices ≥ 3 VV

• Thus 2 VE ≥ 3 VV

62

Complexity

The combination of
(VV +1)−VE+n = 2

and
2 VE ≥ 3 (VV+1)

gives the desired bounds VV ≤ 2n−5 and
VE ≤ 3n−6

63

Time Complexity

• Theorem: The Voronoi diagram of a set of n
point sites in the plane can be computed in
O(nlogn) time

• Algorithms
– Compute the intersection of n−1 half-planes for

each site, and “merge” the cells into the diagram
– Divide-and-conquer (1975, Shamos & Hoey)
– Plane sweep (1987, Fortune)
– Randomized incremental construction (1992,

Guibas, Knuth & Sharir)

64

Empty Circle Property

• Every Voronoi vertex
is the center of an
empty circle through 3
sites

• Every point on a
Voronoi edge is the
center of an empty
circle through 2 sites

• Prove it!

65

Motion Planning for a Disc

• Can we move a disc
from one location to
another amidst
obstacles?

66

Motion Planning for a Disc

• Since the Voronoi
diagram of point sites
is locally “furthest
away” from those
sites, we can move
the disc if and only if
we can do so on the
Voronoi diagram

67

Delaunay Triangulations

Slides by M. van Kreveld
(Utrecht University)

68

Motivation: Terrains by Interpolation

To build a model of the
terrain surface, we can
start with a number of
sample points where we
know the height.

69

Motivation: Terrains

• How do we
interpolate the height
at other points?
– Nearest neighbor

interpolation
– Piecewise linear

interpolation by a
triangulation

– Natural neighbor
interpolation

70

Triangulation
• Let P = {p1, …, pn} be a

point set
• A triangulation of P is a

maximal planar
subdivision with vertex
set P

• Complexity:
• 2n-2-k triangles
• 3n-3-k edges

• where k is the number
of points in P on the
convex hull of P

71

Which Triangulation?

72

Triangulation

• For interpolation, it is good if triangles are
not long and skinny. We will try to use
large angles in our triangulation.

73

Angle Vector of a Triangulation

• Let T be a triangulation of P with m triangles. Its
angle vector is A(T) = (a1, …, a3m) where a1, …,
a3m are the angles of T sorted by increasing
value.

• Let T’ be another triangulation of P. We define
A(T) > A(T’) if A(T) is lexicographically larger
than A(T’)

• T is angle optimal if A(T)≥A(T’) for all
triangulations T’ of P.

74

Edge Flipping

• An edge is illegal if min{ai} < min{ai’}
• Flipping an illegal edge increases the

angle vector

75

Illegal Edges

• An edge pipj is illegal if an only if pl lies in
the interior of the circle C

76

Thales Theorem
• Theorem: Let C be a circle,

l a line intersecting C in
points a and b, and p, q, r,
s points lying on the same
side of l. Suppose that p, q
lie on C, r lies inside C, and
s lies outside C. Then:

• Where abc denotes the
smaller angle defined by
three points a, b, c.

77

Legal Triangulations

78

Voronoi Diagram and Delaunay Graph

• Let P be a set of n
points in the plane

• The Voronoi diagram
Vor(P) is the
subdivision of the plane
into Voronoi cells V(p)

• Let G be the dual graph
of Vor(P)

• The Delaunay graph
DG(P) is the straight
line embedding of G

79

Delaunay Triangulation

• If the point set P is in general position,
then the Delaunay graph is a triangulation

80

Empty Circle Property

Theorem: Let P be a set of
points in the plane, and let T
be a triangulation of P. Then
T is a Delaunay triangulation
of P if and only if the
circumcircle of any triangle of
T does not contain a point of
P in its interior.

81

Delaunay Triangulations and Legal
Triangulations

Theorem: Let P be a set of
points in the plane. A
triangulation T of P is legal if
and only if T is a Delaunay
triangulation.

82

Computing Delaunay Triangulations

• There are several ways to compute the
Delaunay triangulation:
– By iterative flipping from any triangulation
– By plane sweep
– By randomized incremental construction
– By conversion from the Voronoi diagram

• The last three run in O(nlogn) time
[expected] for n points in the plane

83

Incremental Construction
• L. J. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental

construction of Delaunay and Voronoi diagrams, Algorithmica,7,
1992, 381–413.

• Notes by D. Mount

• Insert sites in random order and update the triangulation with each
addition

• After each insertion the expected number of structural changes in the
diagram is O(1)

• The challenge is keeping track of where newly inserted sites are to be
placed in the diagram

• Simple solution: put each of the uninserted points into a bucket
according to the triangle that contains it in the current triangulation

• Claim that the expected number of times that a site is re-bucketed is
O(log n)

84

In Circle Test
• Assume that no four sites are co-circular
• In circle test is equivalent to a determinant

computation
– Assume that abcd define a counterclockwise convex

polygon (abc is the original triangle)
– If not, d lies inside triangle and the test fails
– d lies in circumcircle if and only if the following

determinant is positive (if it is 0, the points are co-
circular)

85

Incremental Update

• Create a non-Delaunay triangulation and fix it
• Join new point with the vertices of the triangle

that contains it
• Flip edges as needed
• Both can be done in O(1)

• Initialize by enclosing all points in a very large
triangle (its vertices must lie outside of all
circumcircles of final triangulation)

86

Incremental Update

• For each new point p, we have created three
new triangles

• For each of the triangles that have been added,
we check the vertex of the triangle that lies on
the opposite side of the edge that does not
include p

• If this vertex fails the in circle test, then we swap
the edge creating two new triangles that are
adjacent to p

• We repeat the same test with these triangles
87

Incremental Update Example

88

Details

• This is only a sketch of algorithm
• We would need to prove that a triangulation that

is locally Delaunay is also globally Delaunay
• Each time triangles are deleted and new

triangles are made, uninserted points must be
re-bucketed in O(1) time per point and each
point is expected to be re-bucketed O(logn)
times

89

