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Lecture Outline

• Triangulating a Polygon (cont. from Week 11)

• Voronoi diagrams
• Delaunay triangulations

– David M. Mount, CMSC 754: Computational 
Geometry lecture notes, Department of Computer 
Science, University of Maryland, Spring 2012

• Lectures 11, 12 and 13

– Slides by:
• M. van Kreveld (Utrecht University)
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Triangulating a Polygon (cont. 
from Week 11)

Slides by M. van Kreveld (Utrecht 
University)
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Two-Ears for Triangulation

• Using the two-ears 
theorem: (an ear 
consists of three 
consecutive vertices u, 
v, w where uw is a 
diagonal)

• Find an ear, cut it off  
with a diagonal, 
triangulate the rest 
iteratively
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Overview

• A simple polygon is y-
monotone iff any horizontal 
line intersects it in a connected 
set (or not at all)

• Use plane sweep to partition 
the polygon into y-monotone 
polygons

• Then triangulate each y-
monotone polygon
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Monotone Polygons

• A y-monotone polygon has a 
top vertex, a bottom vertex, 
and two y-monotone chains 
between top and bottom as its 
boundary

• Any simple polygon with one 
top vertex and one bottom 
vertex is y-monotone
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Vertex Types

• What types of vertices 
does a simple polygon 
have?
– start
– stop
– split
– merge
– regular

• … imagining a sweep line 
going top to bottom
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Sweep Ideas

• Find diagonals from each 
merge vertex down, and 
from each split vertex up

• A simple polygon with no 
split or merge vertices can 
have at most one start and 
one end vertex, so it is y-
monotone
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Sweep Ideas
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Sweep Ideas

• Where can a diagonal 
from a split vertex go?

• Perhaps the upper 
endpoint of the edge 
immediately left of the 
merge vertex?
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Sweep Ideas

• Where can a diagonal 
from a split vertex go?

• Perhaps the last vertex
passed in the same
component?
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Sweep Ideas

• Where can a diagonal 
from a split vertex go?

• Perhaps the last vertex
passed in the same
component?

14



Helpers of Edges

• The helper of an edge e 
is the lowest vertex v 
above the sweep line 
such that the horizontal 
line segment connecting 
e and v is inside the 
polygon

• Note that helper(ej) can 
be the upper endpoint of 
ej itself
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Status of Sweep

• The status is the set of 
edges intersecting the 
sweep line that have the 
polygon to their right, 
sorted from left to right

• Each edge has a helper: 
the last vertex passed in 
that component
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Status Structure, Event List

• The status structure stores all edges that 
have the polygon to the right, with their 
helper, sorted from left to right in the 
leaves of a balanced binary search tree

• The events happen only at the vertices: 
sort them by y-coordinate and put them in 
a list (or array, or tree)
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Main Algorithm

• Initialize the event list (all vertices sorted 
by decreasing y-coordinate) and the status 
structure (empty)

• While there are still events in the event list, 
remove the first (topmost) one and handle 
it
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Event Handling

• Start vertex v:
– Insert the 

counterclockwise 
incident edge in T with 
v as the helper

19



Event Handling

• End vertex v:
– Delete the clockwise 

incident edge and its 
helper from T
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Event Handling

• Regular vertex v:
– If the polygon is to the 

right of the two incident 
edges, then replace the 
upper edge by the lower 
edge in T, and make v 
the helper

– If the polygon is to the 
left of the two incident 
edges, then find the 
edge e directly left of v, 
and replace its helper by 
v
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Event Handling

• Split vertex v:
– Find the edge e 

directly left of v, and 
choose as a diagonal
the edge between its 
helper and v

– Replace the helper of 
e by v 

– Insert the edge 
counterclockwise from 
v in T, with v as its 
helper
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Event Handling

• Merge vertex v:
– Remove the edge 

clockwise from v from 
T

– Find the edge e 
directly left of v, and 
replace its helper by v
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Event Handling

• Diagonal insertion
– When we reach vertex 

vm that replaces vi as 
the helper of  ej, check 
whether old helper is a 
merge vertex 

– If yes, add diagonal 
between old and new 
helper
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Efficiency

• Sorting all events by y-
coordinate takes O(n log n) 
time

• Every event takes O(log n) 
time, because it only 
involves querying, 
inserting and deleting in T
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More Sweeping

• With an upward sweep in 
each subpolygon, we can 
find a diagonal down from 
every merge vertex 
(which is a split vertex for 
an upward sweep!)

• This makes all 
subpolygons y-monotone
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Triangulating a Monotone Polygon

• How to triangulate a 
y-monotone polygon?
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Triangulating a Monotone Polygon

• How to triangulate a 
y-monotone polygon?
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The Algorithm

• Sort the vertices top-to-bottom by a merge 
of the two chains

• Initialize a stack. Push the first two vertices
• Take the next vertex v, and triangulate as 

much as possible, top-down, while 
popping the stack

• Push v onto the stack
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Result

• Theorem: A simple polygon with n vertices 
can be partitioned into y-monotone pieces in 
O(n log n) time

• Theorem: A monotone polygon with n 
vertices can be triangulated O(n) time

• Can we immediately conclude:
• A simple polygon with n vertices can be 

triangulated in O(n log n) time ???
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Result

• We need to argue that all y-monotone polygons that we 
will triangulate have O(n) vertices together

• Initially we had n edges. We add at most n-3 diagonals in 
the sweeps. These diagonals are used on both sides as 
edges. So all monotone polygons together have at most 
3n-6 edges, and therefore at most 3n-6 vertices

• Hence we can conclude that triangulating all monotone 
polygons together takes only O(n) time

• Theorem: A simple polygon with n vertices can be 
triangulated O(n log n) time
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Voronoi Diagrams

Slides by M. van Kreveld
(Utrecht University)
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Voronoi Diagram

• Given ambulance 
posts, where should 
the ambulance come 
from in case of an 
emergency 
somewhere?
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Voronoi Diagram

• Given ambulance 
posts, where should 
the ambulance come 
from in case of an 
emergency 
somewhere?
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Voronoi Diagram

Definition
• The Voronoi diagram 

induced by a set of 
points (called sites):

• Subdivision of the 
plane where the faces 
correspond to the 
regions where one 
site is closest

48



Spatial Interpolation

• Suppose we tested 
the soil at a number of 
sample points and 
classified the results
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Spatial Interpolation

• Suppose we 
measured lead 
concentration at a 
number of sample 
points
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Spatial Interpolation

• Suppose we 
measured lead 
concentration at a 
number of sample 
points (natural 
neighbor 
interpolation)
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Spatial Interpolation

Natural neighbor interpolation

• Let AT = A1+A2+· · ·+A5

• The interpolated value is:
஺భ
஺೅
13+஺మ

஺೅
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Observations

• Edges are parts of 
bisectors

• Some edges are half-
infinite

• Some cells are 
unbounded
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Every Voronoi cell is the 
intersection of n−1 half-
planes, if there are n 
sites
=> all cells are convex 
and have up to n−1 
edges in the boundary

57



Structure

• The Voronoi diagram of n sites has the 
following structure:

• If all n sites lie on a line, then the Voronoi
cell boundaries are parallel lines, so the 
“graph” is disconnected

• Otherwise, the Voronoi cell boundaries 
form a connected “graph”
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Complexity

• Theorem: The Voronoi diagram on f sites in 
the plane has at most 2n−5 Voronoi vertices 
and at most 3n−6 Voronoi edges (including 
lines and half-lines)

• Proof: If the sites are colinear, then it is trivial

• Otherwise, we will use Euler’s formula for 
planar graphs
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Complexity

• Euler’s formula for planar graphs: a 
connected planar graph with nv vertices, ne
edges, and nf faces satisfies:

nv−ne+nf = 2

• However, a Voronoi diagram is not a 
proper graph
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Complexity

We make it proper by connecting 
all half-infinite edges to a new 
vertex v∞

nv = no. of Voronoi vertices VV +1

ne = no. of Voronoi edges VE

nf = no. of Voronoi cells = n, the
number of sites
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Complexity

• Substitution in Euler’s formula nv−ne+nf = 2
gives:

(VV +1)−VE+n = 2
• Every edge is incident to exactly 2 vertices, and 

every vertex is incident to at least 3 edges

• Sum-of-degree-of-all-vertices = 2 VE
• Sum-of-degree-of-all-vertices ≥ 3 VV 

• Thus 2 VE ≥ 3 VV
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Complexity

The combination of
(VV +1)−VE+n = 2

and
2 VE ≥ 3 (VV+1)

gives the desired bounds VV ≤ 2n−5 and 
VE ≤ 3n−6
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Time Complexity

• Theorem: The Voronoi diagram of a set of n 
point sites in the plane can be computed in 
O(nlogn) time

• Algorithms
– Compute the intersection of n−1 half-planes for 

each site, and “merge” the cells into the diagram
– Divide-and-conquer (1975, Shamos & Hoey)
– Plane sweep (1987, Fortune)
– Randomized incremental construction (1992, 

Guibas, Knuth & Sharir)
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Empty Circle Property

• Every Voronoi vertex 
is the center of an 
empty circle through 3 
sites

• Every point on a 
Voronoi edge is the 
center of an empty 
circle through 2 sites

• Prove it!
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Motion Planning for a Disc

• Can we move a disc 
from one location to 
another amidst 
obstacles?
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Motion Planning for a Disc

• Since the Voronoi
diagram of point sites 
is locally “furthest 
away” from those 
sites, we can move 
the disc if and only if 
we can do so on the 
Voronoi diagram
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Delaunay Triangulations

Slides by M. van Kreveld
(Utrecht University)
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Motivation: Terrains by Interpolation

To build a model of the 
terrain surface, we can 
start with a number of 
sample points where we 
know the height.
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Motivation: Terrains

• How do we 
interpolate the height 
at other points?
– Nearest neighbor 

interpolation
– Piecewise linear 

interpolation by a 
triangulation

– Natural neighbor 
interpolation
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Triangulation
• Let P = {p1, …, pn} be a 

point set
• A triangulation of P is a 

maximal planar 
subdivision with vertex 
set P

• Complexity:
• 2n-2-k triangles
• 3n-3-k edges

• where k is the number 
of points in P on the 
convex hull of P
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Which Triangulation?
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Triangulation

• For interpolation, it is good if triangles are 
not long and skinny. We will try to use 
large angles in our triangulation.
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Angle Vector of a Triangulation

• Let T be a triangulation of P with m triangles. Its 
angle vector is A(T) = (a1, …, a3m) where a1, …, 
a3m are the angles of T sorted by increasing 
value.

• Let T’ be another triangulation of P. We define 
A(T) > A(T’) if A(T) is lexicographically larger 
than A(T’)

• T is angle optimal if A(T)≥A(T’) for all 
triangulations T’ of P.
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Edge Flipping

• An edge is illegal if min{ai} < min{ai’}
• Flipping an illegal edge increases the 

angle vector
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Illegal Edges

• An edge pipj is illegal if an only if pl lies in 
the interior of the circle C
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Thales Theorem
• Theorem: Let C be a circle, 

l a line intersecting C in 
points a and b, and p, q, r, 
s points lying on the same 
side of l. Suppose that p, q 
lie on C, r lies inside C, and 
s lies outside C. Then:

• Where   abc denotes the 
smaller angle defined by 
three points a, b, c.
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Legal Triangulations
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Voronoi Diagram and Delaunay Graph

• Let P be a set of n 
points in the plane

• The Voronoi diagram 
Vor(P) is the 
subdivision of the plane 
into Voronoi cells V(p)

• Let G be the dual graph 
of Vor(P)

• The Delaunay graph 
DG(P) is the straight 
line embedding of G
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Delaunay Triangulation

• If the point set P is in general position, 
then the Delaunay graph is a triangulation
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Empty Circle Property

Theorem: Let P be a set of 
points in the plane, and let T 
be a triangulation of P. Then 
T is a Delaunay triangulation 
of P if and only if the 
circumcircle of any triangle of 
T does not contain a point of 
P in its interior.
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Delaunay Triangulations and Legal 
Triangulations

Theorem: Let P be a set of 
points in the plane. A 
triangulation T of P is legal if 
and only if T is a Delaunay 
triangulation.
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Computing Delaunay Triangulations

• There are several ways to compute the 
Delaunay triangulation:
– By iterative flipping from any triangulation
– By plane sweep
– By randomized incremental construction
– By conversion from the Voronoi diagram

• The last three run in O(nlogn) time 
[expected] for n points in the plane
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Incremental Construction
• L. J. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental 

construction of Delaunay and Voronoi diagrams, Algorithmica,7, 
1992, 381–413.

• Notes by D. Mount

• Insert sites in random order and update the triangulation with each 
addition

• After each insertion the expected number of structural changes in the 
diagram is O(1)

• The challenge is keeping track of where newly inserted sites are to be 
placed in the diagram

• Simple solution: put each of the uninserted points into a bucket 
according to the triangle that contains it in the current triangulation

• Claim that the expected number of times that a site is re-bucketed is 
O(log n)
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In Circle Test
• Assume that no four sites are co-circular
• In circle test is equivalent to a determinant 

computation
– Assume that abcd define a counterclockwise convex 

polygon (abc is the original triangle)
– If not, d lies inside triangle and the test fails
– d lies in circumcircle if and only if the following 

determinant is positive (if it is 0, the points are co-
circular)
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Incremental Update

• Create a non-Delaunay triangulation and fix it
• Join new point with the vertices of the triangle 

that contains it
• Flip edges as needed
• Both can be done in O(1)

• Initialize by enclosing all points in a very large 
triangle (its vertices must lie outside of all 
circumcircles of final triangulation)
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Incremental Update

• For each new point p, we have created three 
new triangles

• For each of the triangles that have been added, 
we check the vertex of the triangle that lies on 
the opposite side of the edge that does not 
include p

• If this vertex fails the in circle test, then we swap 
the edge creating two new triangles that are 
adjacent to p

• We repeat the same test with these triangles
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Incremental Update Example
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Details

• This is only a sketch of algorithm
• We would need to prove that a triangulation that 

is locally Delaunay is also globally Delaunay
• Each time triangles are deleted and new 

triangles are made, uninserted points must be 
re-bucketed in O(1) time per point and each 
point is expected to be re-bucketed O(logn) 
times
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