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Lecture Outline

• Unorganized point clouds
– Range queries and kd-trees

• Descriptors for 3D point clouds

• David M. Mount, CMSC 754: 
Computational Geometry lecture notes, 
Department of Computer Science, 
University of Maryland, Spring 2012
– Lecture 16
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Point Clouds 
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Unorganized Point Clouds

• In many cases, data come as unorganized 
point clouds
– Not trivial to generate meshes even given a 

2D reference frame (see Homework 6.2)
– Even more complicated to fuse multiple 

viewpoint-based meshes
– Some sensors (moving LIDAR) measure only 

points
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What can be done?

• While mesh generation is possible, it is not 
guaranteed to be correct
– Even watertight manifolds can be generated 

using Poisson surface reconstruction (see 
previous notes)

– It is often hard to discriminate forward and 
backward facing points

– It is hard to determine whether there are gaps 
between points
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What can be done?

• Process the data by assuming possible 
connections between points
– I.e. assuming nearby points belong to the 

same smooth surface

• Do not make hard decisions
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Key Parameter: Scale

• Trade-off between fidelity to data and 
robustness to noise

• If analysis is performed at small scale, 
details (high curvature) can be preserved

• If data are noisy, high curvature typically 
corresponds to noise…
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Nearest Neighbors

• Number one enabling technology for working 
with unorganized point clouds: Nearest 
Neighbor Search

• Algorithms cannot be quadratic
• It can be shown that kd-trees can be 

generated in O(n logn) time
• Queries take O(logn) per point
– k queries: find k nearest neighbors of query point
– epsilon queries: find neighbors within an ε-ball 

centered at the query point 
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Tools
• knnsearch() in Matlab

– http://www.mathworks.com/help/stats/knnsearch.html
– Do multiple queries with one call

• FLANN library
– http://www.cs.ubc.ca/research/flann/
– Bindings for C/C++, Matlab and python, part of PCL

• CvKNearest in OpenCV (which has bindings for 
C/C++, Python and Java)

• KDTree in scikit

• All these are not limited to 3D data
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1D Range Queries

• 1D range query problem: Preprocess a set of n 
points on the real line such that the ones inside a 
1D query range (interval) can be reported fast

• The points p1, …, pn are known beforehand, the 
query [x, x’] only later

• A solution to a query problem is a data structure 
description, a query algorithm, and a 
construction algorithm
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Balanced Binary Search  Trees
• A balanced binary search tree with the points in 

the leaves
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Balanced Binary Search  Trees
• The search path for 25
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Balanced Binary Search  Trees
• The search paths for 25 and 90

13



Example 1D Range Query

• A 1D range query with [25, 90]
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Node Types for a Query

• Three types of nodes for a given query:
–White nodes: never visited by the query
– Grey nodes: visited by the query, unclear if 

they lead to output
– Black nodes: visited by the query, whole 

subtree is output
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Node Types for a Query

• The query algorithm comes down to what we do 
at each type of node

• Grey nodes: use query range to decide how to 
proceed: to not visit a subtree (pruning), to report 
a complete subtree, or just continue

• Black nodes: traverse and enumerate all points 
in the leaves
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Example 1D Range Query

• A 1D range query with [61, 90]
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1D Range Query Algorithm
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Query Time Analysis

• The efficiency analysis is based on counting the 
numbers of nodes visited for each type
– White nodes: never visited by the query; no time 

spent
– Grey nodes: visited by the query, unclear if they lead 

to output; time complexity depends on n
– Black nodes: visited by the query, whole subtree is 

output; time complexity depends on k, the output size
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Query Time Analysis

• Grey nodes: they occur on only two paths in the 
tree, and since the tree is balanced, its depth is 
O(logn)

• Black nodes: a (sub)tree with m leaves has m-1 
internal nodes; traversal visits O(m) nodes and 
finds m points for the output

• The time spent at each node is O(1) 

=>O(logn+k) query time
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Range Queries in 2D
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Kd-Trees

• Kd-trees, the idea: Split the point set 
alternatingly by x-coordinate and by y-coordinate

• Split by x-coordinate: split by a vertical line that 
has half the points to its left or on it, and half to 
its right

• Split by y-coordinate: split by a horizontal line 
that has half the points below or on it, and half 
above it
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Kd-Trees
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Kd-Tree Construction
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Kd-Tree Region of Nodes
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Kd-Tree Querying
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Kd-Tree Querying
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Nearest Neighbor Search

• Effects of input distribution on search
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Kd-Trees in Higher Dimensions

Theorem: A set of n points in d-space 
can be preprocessed in O(n logn) time into a data 
structure of O(n) size 
so that any d-dimensional range query can be 
answered in O(n1-1/d +k) time, where k is the 
number of answers reported
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FLANN

• Adaptively selects between
– Randomized kd-trees
– Hierarchical k-means trees

• Criteria
– Dimensionality
– Relative weights on tree construction vs. 

search optimization
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Normal Estimation in Point Clouds

• Important task in itself
• Useful for encoding data in 

representations enabling classification, 
matching and indexing

• Assumption: each point lies on locally 
linear (planar) patch along with some 
(many) of its neighbors
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Normal Estimation in Point Clouds

• Find reference point’s nearest neighbors
– Forming triplets (ref. point + 2 NNs) increases 

complexity with dubious benefits
– Form pairs and accumulate partial 

information, since two points do not define a 
surface

• Accumulate information for reference 
point’s tangent plane
– Vector connecting ref. point and each NN 

belongs to tangent plane
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Normal Estimation in Point Clouds

• Form scatter (covariance) matrix
• Normal: eigenvector with smallest 

eigenvalue (0 eigenvalue if perfect plane)

• Tombari et al. ECCV 2010:
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where, R is the radius of the ball around p and di is the 
distance from p to pi
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Normal Estimation in Point Clouds

• Tombari et al. resolve sign of eigenvectors (x, y, z) 
by making them consistent with majority of 
neighborhood points

• Where does the surface normal point for convex 
shapes?
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The Right Way

• Count nearest neighbors more, attenuate 
influence of remote points
– At the very least, normalize vectors that 

contribute to covariance matrix
– Use weight function on outer products that 

decreases with distance
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Normal Estimation

• My recommendation
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with σ a parameter representing scale.
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Descriptors for 3D Point 
Clouds
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Invariant Descriptors

• Objective: represent point cloud (or surface) in a 
way that it can be compared and matched with 
other point clouds

• Trade-off between Uniqueness and Repeatability
• Invariance to:

– Rigid transformation of the object
– Viewpoint change of the scanner(s)
– Sampling variations
– Noise

• Local and global descriptors have been proposed
– Focus on local here
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Spin Images

• Johnson and Hebert, PAMI 1999
• Arguably most popular 3D shape 

descriptor, used in several recognition 
engines

• Fast to compute and very fast to compare
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Spin Images
• Computed in a cylindrical coordinate system 

defined by a reference point and its corresponding 
normal

• All points within this region are transformed by 
computing:
– the distance from the reference normal ray α
– the height above the reference normal plane β

• A 2D histogram of α and β is used as the 
descriptor 

• Due to integration around the normal of the 
reference point, spin images are invariant to 
rotations about the normal
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Spin Images
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Effects of Parameters

• Parameters of a spin image
– Number of bins horizontally and vertically

• Make vertical number of bins odd

– Bin size
– Support angle (max angle between reference normal 

and neighboring point normal to be included)
• Default 60 degrees

42



3D Shape Contexts

• Frome et al., ECCV 2004
• Histogram of neighboring points in sphere

• Challenge: matching requires rotations
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3D SURF

• Knopp et al., ECCV 2010
• Detector and descriptor
• Convert surface into voxel representation
• Compute second-order derivatives at several 

scales (3 octaves)
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3D SURF

• Saliency function: absolute value of the 
determinant of the Hessian matrix at each point

• Select keypoints after non-max suppression
• Compute invariant local coordinate frame
• Descriptor: 
– N×N×N grid around the feature
– At each grid cell, store a 6-dimensional description 

vector of Haar wavelet responses
– Default N=3
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Fast Point Feature Histograms

• Rusu et al., ICRA 2009 (other 
variations exist)

• PFH: Given points and normal:
– Find all pairs of neighbors of reference point 

and define local frame
– u=ni

– v=(pj-pi)×u
– w=u×v
– Compute properties of frame
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Fast Point Feature Histograms
• PFH (cont)
– Perform persistence analysis to determine which 

features are salient at a given scale
• FPFH:
– Do not compute over all pairs of neighbors, but only 

between reference point and its k nearest neighbors
– Then, blend Simplified Point Feature Histograms 

(SPFH) with weights inversely proportional to 
distances between points (typically 5 bins per 
dimension, 125-D descriptor)

– More optimizations in paper
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Extended Gaussian Images
• Horn, Proc. of the IEEE 1984
• Represent shape by mapping the normal 

of each point on unit sphere
– Surface normal has two degrees of freedom

• Convex shapes can be uniquely 
reconstructed given EGI
– Non-convex shapes can be described by EGI 

with some loss of information
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Extended Gaussian Images

• Above: input point cloud, EGI, constellation 
EGI

• Matching requires alignment of two spherical 
histograms
– Unpleasant, at best
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Analysis of Large-Scale 3D 
Point Clouds
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Segmentation of Large-scale 3D Datasets
• Input: colored point clouds collected by 

terrestrial and airborne LIDAR sensors
• Goal: detect and 

recognize more 
than 100 objects 
classes
– Stadiums and 

power plants 
–Mailboxes and 

parking meters
– Powerlines

975 million points

51



A Minimum Cover Approach for 
Extracting the Road Network 
from Airborne LIDAR Data 

• Combine   local edge and region  information to 
estimate road likelihood

• Pose road extraction as minimum cover 
problem 

• Explain likelihood maps  by rectangular road 
segments with strong preference for 
elongated  segments

52[Zhu and Mordohai, 3DIM 2009]



Overview of the Algorithm
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Hypothesis Generation
• Sample hypotheses from region boundaries 

returned by NCut segmentation on intensity image 
– Captures low-contrast boundaries
– Test multiple values for width (10-25m) and length (40-

300m) 

• Output likelihood maps L for each width by 
combining boundary and interior feature strengths
– Each likelihood map covers all orientations resulting in 

good performance at intersections
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Detection as Minimum Cover
• Explain likelihood maps by sparsest set of road 

segments
• Penalize uncovered parts according to road likelihood

• Penalize covered parts according to bg likelihood

• Penalize for additional components

• NP‐hard in general, but greedy approximation with 
theoretical guarantees is effective [Felzenszwalb and 
McAllester, 2006]
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Road Detection

56



Road Detection

57



Road Detection
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City Blocks
Segment city blocks from road 
likelihood map using the 
intervening contour idea (Leung 
and Malik, 1998)
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Building Detection and Parsing

● Detection of buildings from unorganized range data
● Parsing of the buildings into an hierarchical, semantic 
representation

60
[Toshev, Mordohai and Taskar, CVPR 2010]



Approach
• Use a generic grammar based on simple geometric 

rules
• Apply dependency parsing for efficient inference
• Define parsing and detection in a single framework

• Primitives:
– Planes and planar patches – explicitly detectable from point 

clouds
– Volumes – represent building parts and are enclosed by 

planar patches
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Grammar
• Terminals: planar patches 

extracted from point cloud.
• Non terminals:
– Roof components
– Volumes enclosed by the roofs
– Supernodes : a global “building” 

and a global “non-building” node 
used for detection
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Classification

• Classification of a volume using a linear SVM
• Features are extracted from planar patches 

enclosing the volume:
– Elevation
– Distance to the nearest ground point
– Convexity of the upper volume surface
– Scatter of point cloud in the volume
– Area and aspect ratio
– Degree of enclosure by empty space
– Fitting error
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Parsing

• Productions for parsing planar patches are deterministic
• Hierarchy among volumes is not deterministic – dependency 
parsing
• For set of planar patches, a sequence of productions generates a 
parse tree
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Inference
• Construct a directed graph G consisting of the 
volumes
• Edge weights represent:
–Hierarchy based on the area
–How likely they belong to the same class
–Whether they are children of the supernodes

• A parse tree T is a maximum spanning tree in G
• Use Chi-Liu/Edmonds algorithm to compute 
MST

65



Quantitative Results

• 9 blocks used for training (buildings and their 
parses are labeled)

• 78 blocks used for testing (only buildings are 
labeled)

• Detection results (accuracy of patch 
classification):  89.3%

• Parsing accuracy (3-fold cross-validation on the 
9 blocks): 76.2 %
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Detection Results
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Detection Results
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Detection Results
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Parsing Results
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3D Object Detection using Bottom-
up and Top-down Descriptors

• Detect objects in large-scale 3D datasets
• Requirements:
– Precision
– Recall
– Speed

71[Patterson, Mordohai and Daniilidis, ECCV 2008]



Shape Descriptors
• Different descriptors provide different trade-

off between speed and accuracy
• More types of invariance => faster, less 

discriminative
– E.g. spin images vs. 3D shape contexts

• Global descriptors are more accurate, but 
are sensitive to occlusion (and deformation)
– Require only one comparison per target
– Need segmentation hypotheses
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Approach

• Spin images for fast bottom-up detection 
of regions of interest
– Objective: maximize recall

• Extended Gaussian Images (EGIs) as 
global top-down descriptors to verify 
hypotheses
– Objective: prune wrong hypotheses
– Side product: best alignment with most similar 

model
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Experiments

• Dataset: 220 million points collected from 
terrestrial sensors

• 2.2 million used as training set for spin 
images
– 81,000 spin images in DBSI, 2600 positive
– 17 cars in DBEGI
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Bottom-up Detection

• Spin images of unknown scene classified as 
positive or negative

• Positive spin images clustered to form hypotheses
– Minimum number required for hypothesis
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Results
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Results
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Results
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Precision-Recall Curve
• Data: 1221 cars
• Bottom-up stage:
– 2200 hypotheses, 

1100 correct

• Top-down stage *:
– 905 true positives
– 74 false alarms
– 316 missed detectionsPrecision
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Car Detection Video
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