CS 532: 3D Computer Vision
12t Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215

Lecture Outline

e Meshes

« Slides by:
— S. Rusinkiewicz, T. Liu and V. Kim (Princeton
University)

 David M. Mount, CMSC 754:
Computational Geometry lecture notes,
Department of Computer Science,
University of Maryland, Spring 2012

— Lecture 22

3D Polygonal Mesh

« Set of polygons representing a 2D surface embedded in 3D

! N Z

[.-ﬂ‘ g»
<) N\ i 1
O P e st galleon
KOOSR v=2372
s o= ,, g\
sl S

“tgr' R g

PR T

triceratops
v=2832
p=2834

cow_po!y { the polygonal cow
o~ is not shown. it is the
v=2904 ;
same cow maodel, but
not fully triangulated)

cow
v=2904

beethoven
p=35804 p=3263

v = 2655
p=2812

3D Polygonal Mesh

Face

Edge

Vertex
(X,y,2)

3D Polygon

* Region “inside” a sequence of coplanar
points

 Points in counter-clockwise order
— Define normal

A D
w4

3D Polygonal Meshes

Why are they of interest?

e Simple, common representation

* Rendering with hardware support

e Qutput of many acquisition tools

e |Input to many simulation/analysis tools

Surface Normals

Curvature

“best [it" circle al P

Figure 32: curvature of curve at P is 1/k

Rigid Transformations

e Compare with
implicit
representations
- level sets

Deformations

10

Deformations

Smoothing

Thouis “Ray” Jones

Weighted Average
of Neighbor Vertices

12

Sharpen

Weighted Average
of Neighbor Vertices

13

Low-level Operations

Subdivide face
Subdivide edge
Collapse edge
Merge vertices
Remove vertex

Subdivide Face

 How should we split current triangle?

Subdivide Edge

Collapse Edge

Merge Vertices

Polygonal Mesh Representation

Important properties of mesh representation
» Efficient traversal of topology
o Efficient use of memory

o Efficient updates

19

Possible Data Structures

List of independent faces
Vertex and face tables
Adjacency lists

Winged edge

Half edge

etc.

Independent Faces

e A.k.a triangle soup

e Each face lists vertex coordinates

— Redundant vertices

— No adjacency information

(X3’ y3! 23)

FACE TABLE

F1

(X'l ’ y'l ’ Z‘]) (X27 Y2, 22) (XS! y37 23)
(X21 y27 22) (X4: y4: 24) (X3! y3! 23)
(X21 y2! 22) (X57 Y5: 25) (de y47 24)

21

Vertex and Face Tables

e Each face lists vertex references
— Shared vertices
— Still no adjacency information

VERTEXTABLE| |FACE TABLE
Vil Xy Y1 44 Fi|Vy Vo Vg
Vo |Xo Yo Zp| |F2|V2 V4 V3
Vg | Xg Yg Z3 F3|V2 Vs Vg
Va|Xgq Yy 2
V5 | X5 Yg Zg

22

Adjacency Lists

« Store all vertex, edge and face adjacencies
— Efficient adjacency traversal

— Extra storage Vo Vg

requirements

E';f 6’4 6’2 5’56’6

FiFo

Partial Adjacency Lists

e Can we store only some adjacency
relationships and derive others?

Vo Vg Vg

Vo V3 »
AN

FqFo

{E}

/\

{V}.. "{F

Winged Edge

« Adjacency encoded in edges
— All adjacencies in O(1) time

 Little extra storage (fixed records)
« Arbitrary polygons

4

{E}

AN

{Fi}

Winged Edge

(X3, Y3, Z3)

eI ez (e ¥s Zo)
VERTEX TABLE EDGE TABLE o FACE
TABLE
V-l X-| Y-| Z-| e1 e V'| V3 F-| ey €2 €y eq
Vo |Xo Yo Iy |eg e2 | V1 Vo|Fy e1 e e3 eg | |Fq1|eq
V3| X3 Y3 Z3 |e3 ez Vo V3 |Fy Folep e5 e eq| |Foleg
Va|Xaq Ya Zy | e5 eq| V3 Vy Foley e3 e7 ep Fa|es
V5| X5 Y5 Z5 | &g o5 | Vo Vy|Fo F3leg eg eq4 e7
96 V2 V5 F3 e5 82 97 97
€7 | Va Vs F3 e e5 e ¢©g .

Half Edge

* Adjacency encoded in edges
— All adjacencies in O(1) time
— Little extra storage (fixed records)
— Arbitrary polygons

e Similar to winged-edge,
except adjacency
encoded in half-edges

Half Edge

e Each undirected edge represented by two
directed half edges

— Unambiguously defines left and right
 Assume that there are no holes in faces

Half Edge

Each vertex stores:
— its coordinates
— a pointer v.inc_edge to any directed edge that has vertex as its origin

Each directed edge is associated with:
— a pointer to the oppositely directed edge, called its twin
— an origin and destination vertex
— two faces, one to its left and one to its right.

We only store:
— a pointer to the origin vertex e.org (e.dest can be accessed as e.twin.org)

— a pointer to the face to the left of the edge e.left (we can access the face
to the right from the twin edge)

— pointers to the next and previous directed edges in counterclockwise
order about the incident face, e.next and e.prev, respectively

Each face f stores a pointer to a single edge for which this face is the
incident face, f.inc_edge

How to Load a Shape

* From file with vertices and triangles

30

How to Load a Shape

 Add vertex coordinates
to list

How to Load a Shape

 Add vertex coordinates
to list

* Add half-edges
with faces A

How to Load a Shape

 Add vertex coordinates
to list

* Add half-edges
with faces

— Inner half-edges
are sufficient \
S ~

How to Load a Shape

 Add vertex coordinates

to list
* Add half-edges
with faces A
— Inner half-edges /
are sufficient \
— Update vertex
ch)inters to ——>

half-edges

How to Load a Shape

 Add vertex coordinates
to list

* Add half-edges
with faces

— Inner half-edges

are sufficient
— Update vertex \

pointers to ‘
half-edges e
— Half-edges: pointer to next, ~

pointer to face
— Faces: pointer to one of the inner half-edges

How to Load a Shape

« Continue adding incrementally

36

Finding Adjacent Faces

« Check all outgoing
half edges

— V points to a half edge
HE

— ADD_FACE(HE)

— |terate:
e X=HE.twin
e Y=X.next
« ADD_FACE(Y)
e HE:=Y

37

Collapsing an Edge

e Create a new vertex v

e Remove faces

38

Collapsing an Edge

e Create a new vertex v
e Remove faces
 Change twin pointers

Collapsing an Edge

Create a new vertex v
Remove faces

40

Collapsing an Edge

Create a new vertex v N
Remove faces N\ \
Change twin pointers |
Remove edges

Change pointers
from half-edges to

v, and v, \

Collapsing an Edge

Create a new vertex v
Remove faces

Change twin pointers /
Remove edges T~ /
Change pointers / \ ‘
from half-edges to

v, and v,

Remove v, and v,
Pick an outgoing edge for v

