
CS 532: 3D Computer Vision 
12th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1



Lecture Outline

• Meshes

• Slides by:
– S. Rusinkiewicz, T. Liu and V. Kim (Princeton 

University)

• David M. Mount, CMSC 754: 
Computational Geometry lecture notes, 
Department of Computer Science, 
University of Maryland, Spring 2012
– Lecture 22

2



3D Polygonal Mesh
• Set of polygons representing a 2D surface embedded in 3D

3



3D Polygonal Mesh

4



3D Polygon

• Region “inside” a sequence of coplanar 
points

• Points in counter-clockwise order
– Define normal

5



3D Polygonal Meshes

Why are they of interest? 
• Simple, common representation 
• Rendering with hardware support 
• Output of many acquisition tools 
• Input to many simulation/analysis tools 

6



Surface Normals

7



Curvature

8



Rigid Transformations

• Compare with 
implicit 
representations 
– level sets

9



Deformations

10



Deformations

11



Smoothing

12



Sharpen

13



Low-level Operations

• Subdivide face 
• Subdivide edge 
• Collapse edge 
• Merge vertices 
• Remove vertex

14



Subdivide Face

• How should we split current triangle?

15



Subdivide Edge

16



Collapse Edge

17



Merge Vertices

18



Polygonal Mesh Representation
Important properties of mesh representation
• Efficient traversal of topology 
• Efficient use of memory 
• Efficient updates 

19



Possible Data Structures

• List of independent faces
• Vertex and face tables
• Adjacency lists
• Winged edge
• Half edge
• etc.

20



Independent Faces

• A.k.a triangle soup
• Each face lists vertex coordinates

– Redundant vertices
– No adjacency information

21



Vertex and Face Tables

• Each face lists vertex references
– Shared vertices
– Still no adjacency information

22



Adjacency Lists
• Store all vertex, edge and face adjacencies

– Efficient adjacency traversal
– Extra storage 

requirements

23



Partial Adjacency Lists
• Can we store only some adjacency 

relationships and derive others?

24



Winged Edge
• Adjacency encoded in edges

– All adjacencies in O(1) time

• Little extra storage (fixed records)
• Arbitrary polygons

25



Winged Edge

26



Half Edge

• Adjacency encoded in edges
– All adjacencies in O(1) time
– Little extra storage (fixed records)
– Arbitrary polygons 

• Similar to winged-edge, 
except adjacency 
encoded in half-edges

27



Half Edge

• Each undirected edge represented by two 
directed half edges
– Unambiguously defines left and right

• Assume that there are no holes in faces

28



Half Edge
• Each vertex stores:

– its coordinates 
– a pointer v.inc_edge to any directed edge that has vertex as its origin

• Each directed edge is associated with:
– a pointer to the oppositely directed edge, called its twin 
– an origin and destination vertex
– two faces, one to its left and one to its right.

• We only store:
– a pointer to the origin vertex e.org (e.dest can be accessed as e.twin.org)
– a pointer to the face to the left of the edge e.left (we can access the face 

to the right from the twin edge) 
– pointers to the next and previous directed edges in counterclockwise 

order about the incident face, e.next and e.prev, respectively
• Each face f stores a pointer to a single edge for which this face is the 

incident face, f.inc_edge

29



How to Load a Shape

• From file with vertices and triangles

30



How to Load a Shape

• Add vertex coordinates
to list

31



How to Load a Shape

• Add vertex coordinates
to list

• Add half-edges 
with faces

32



How to Load a Shape

33

• Add vertex coordinates
to list

• Add half-edges 
with faces
– Inner half-edges

are sufficient



How to Load a Shape

34

• Add vertex coordinates
to list

• Add half-edges 
with faces
– Inner half-edges

are sufficient
– Update vertex

pointers to
half-edges



How to Load a Shape

35

• Add vertex coordinates
to list

• Add half-edges 
with faces
– Inner half-edges

are sufficient
– Update vertex

pointers to
half-edges

– Half-edges: pointer to next,
pointer to face

– Faces: pointer to one of the inner half-edges



How to Load a Shape

• Continue adding incrementally

36



Finding Adjacent Faces

• Check all outgoing 
half edges
– V points to a half edge 

HE
– ADD_FACE(HE)
– Iterate:

• X=HE.twin
• Y=X.next
• ADD_FACE(Y)
• HE:=Y

37



Collapsing an Edge

38

• Create a new vertex v
• Remove faces



Collapsing an Edge

39

• Create a new vertex v
• Remove faces
• Change twin pointers



Collapsing an Edge

40

• Create a new vertex v
• Remove faces
• Change twin pointers
• Remove edges



Collapsing an Edge

41

• Create a new vertex v
• Remove faces
• Change twin pointers
• Remove edges
• Change pointers 

from half-edges to 
v1 and v2



Collapsing an Edge

42

• Create a new vertex v
• Remove faces
• Change twin pointers
• Remove edges
• Change pointers 

from half-edges to 
v1 and v2

• Remove v1 and v2

• Pick an outgoing edge for v


