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Lecture Outline
• Line Intersection
• Polygon triangulation

• David M. Mount, CMSC 754: Computational 
Geometry lecture notes, Department of Computer 
Science, University of Maryland, Spring 2012
– Lectures 5 and 6

• Slides by:
– P. Indyk and J.C. Yang (MIT)
– M. van Kreveld (Utrecht University)

2



Line Segment Intersection

Slides by M. van Kreveld
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Map Layers

• In a geographic 
information system (GIS) 
data is stored in separate 
layers

• A layer stores the 
geometric information 
about some theme, like 
land cover, road network, 
municipality boundaries, 
red fox habitat, …
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Map Overlay
• Map overlay is the combination 

of two (or more) map layers 
• It is needed to answer 

questions like:
– What is the total length of roads 

through forests?
– What is the total area of corn fields 

within 1km from a river?

• To solve map overlay 
questions, we need (at the 
least) intersection points from 
two sets of line segments 
(possibly, boundaries of 
regions) 5



The Easy Problem

• Given a set of n line 
segments in the 
plane, find all 
intersection points 
efficiently
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An Easy Algorithm
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Is it Optimal?
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Output-sensitive Algorithms

• The asymptotic running time of 
an algorithm is always input-
sensitive (depends on n)

• We may also want the running 
time to be output-sensitive: if 
the output is large, it is fine to 
spend a lot of time, but if the 
output is small, we want a fast 
algorithm
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Intersection Points in Practice

• Question: How many 
intersection points do we 
typically expect in our 
application?

• If this number is k, and if 
k = O(n), it would be nice 
if the algorithm runs in 
O(nlogn) time
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First Attempt

• Observation: Two line 
segments can only intersect 
if their y-spans have an 
overlap

• So, how about only testing 
pairs of line segments that 
intersect in the y-projection?

• 1D problem: Given a set of 
intervals on the real line, find 
all partly overlapping pairs
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First Attempt

• 1D problem: Given a set of intervals on the 
real line, find all partly overlapping pairs

• Sort the endpoints and handle them from left 
to right; maintain currently intersected 
intervals in a balanced search tree T
– Left endpoint of si: for each sj in T, report the pair 

si; sj. Then insert si in T
– Right endpoint of si: delete si from T

• Question: Is this algorithm output-sensitive 
for 1D interval intersection?
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First Attempt

• Back to the 2D problem:
• Determine the y-intervals of the 2D line 

segments
• Find the intersecting pairs of intervals with the 

1D solution
• For every pair of intersecting intervals, test 

whether the corresponding line segments 
intersect, and if so, report it

• Question: Is this algorithm output-sensitive for 
2D line segment intersection?
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Second Attempt

• Refined observation: Two 
line segments can only 
intersect if their y-spans 
have an overlap, and they 
are adjacent in the x-order 
at that y-coordinate (they 
are horizontal neighbors)
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Plane Sweep

The plane sweep technique: Imagine a horizontal line 
passing over the plane from top to bottom, solving the 
problem as it moves
• The sweep line stops and the algorithm computes at 

certain positions => events
• The algorithm stores the relevant situation at the current 

position of the sweep line => status
• The algorithm knows everything it needs to know above 

the sweep line, and has found all intersection points
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Sweep
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Sweep and Status
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Status and Events

• The status of this particular plane sweep 
algorithm, at the current position of the 
sweep line, is the set of line segments 
intersecting the sweep line, ordered from 
left to right

• Events occur when the status changes, 
and when output is generated
– event = interesting y-coordinate
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Plane Sweep
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Plane Sweep

20



Plane Sweep
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Plane Sweep
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Plane Sweep
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Plane Sweep
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Plane Sweep
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Plane Sweep
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Plane Sweep
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Plane Sweep

… and so on …
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Events

When do the events happen? When the sweep 
line is at:

• an upper endpoint of a line segment
• a lower endpoint of a line segment
• an intersection point of a line segment

At each type, the status changes; at the third 
type output is found too
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Assume No Degenerate Cases
We will at first exclude degenerate 
cases:

• No two endpoints have the same y-
coordinate

• No more than two line segments 
intersect at a point

• …

Question: Are there more degenerate 
cases?
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Event List and Status Structure
• The event list is an abstract data structure that 

stores all events in the order in which they occur
• The status structure is an abstract data structure 

that maintains the current status
• Here: The status is the subset of currently 

intersected line segments in the order of 
intersection by the sweep line
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Status Structure
• We use a balanced binary search tree with the line 

segments in the leaves as the status structure
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Status Structure
• Upper endpoint: search and insert
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Status Structure
• Upper endpoint: search and insert
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Status Structure
• Upper endpoint: search and insert
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Status Structure
• Sweep line reaches lower endpoint of a line 

segment: delete from the status structure

• Sweep line reaches intersection point: swap 
two leaves in the status structure (and update 
information on the search paths)
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Finding Events

• Before the sweep algorithm starts, we know 
all upper endpoint events and all lower 
endpoint events

• But: How do we know intersection point 
events??? (these we were trying to find …)

• Recall: Two line segments can only intersect 
if they are horizontal neighbors
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Finding Events

• Lemma: Two line segments si and 
sj can only intersect after (= below) 
they have become horizontal 
neighbors

• Proof: Just imagine that the sweep 
line is ever so slightly above the 
intersection point of si and sj, but 
below any other event, prove by 
contradiction

• Also: some earlier (= higher) event 
made si and sj horizontally adjacent
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Event List

• The event list must be a priority queue, because 
during the sweep, we discover new events that 
will happen later

• We know upper endpoint events and lower 
endpoint events beforehand; we find intersection 
point events when the involved line segments 
become horizontal neighbors
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Plane Sweep Algorithm
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Event Handling

If the event is an upper endpoint 
event, and s is the line segment that 
starts at p:
1. Search with p in T, and insert s
2. If s intersects its left neighbor in 

T, then determine the intersection 
point and insert in Q

3. If s intersects its right neighbor in 
T, then determine the intersection 
point and insert in Q
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Event Handling

If the event is a lower endpoint 
event, and s is the line segment that
ends at p:
1. Search with p in T, and delete s
2. Let sl and sr be the left and right 

neighbors of s in T (before 
deletion). If they intersect below 
the sweep line, then insert their 
intersection point as an event in 
Q
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Event Handling
If the event is an intersection point 
event where s and s’ intersect at p:
1. Exchange s and s’ in T
2. If s’ and its new left neighbor in T 

intersect below the sweep line, 
then insert this intersection point 
in Q

3. If s and its new right neighbor in 
T intersect below the sweep line, 
then insert this intersection point 
in Q

4. Report the intersection point
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Event Handling

Is it possible that new 
horizontal neighbors 
already intersected 
above the sweep line?

Is it possible that we 
insert a newly detected 
intersection point event, 
but it already occurs in 
Q?
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Efficiency

• How much time to handle an event?
• At most one search in T and/or one insertion, 

deletion, or swap
• At most twice finding a neighbor in T
• At most one deletion from and two insertions 

in Q
• Since T and Q are a balanced binary search 

tree and a priority queue, handling an event 
takes only O(logn) time
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Efficiency

• How many events?
– 2n for the upper and lower endpoints
– k for the intersection points, if there are k of 

them

• In total: O(n+k) events
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Efficiency

• Initialization takes O(nlogn) time (to put all upper 
and lower endpoint events in Q)

• Each of the O(n+k) events takes O(logn) time
• The algorithm takes O(nlogn+k logn) time
• If k = O(n), then this is O(nlogn)
• Note that if k is really large, the brute force O(n2) 

time algorithm is more efficient
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Degenerate Cases

• How do we deal with degenerate cases?
• For two different events with the same y-

coordinate, we treat them from left to right => the 
“upper" endpoint of a horizontal line segment is 
its left endpoint
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Degenerate Cases

• How about multiply coinciding event points?
• Let U(p) and L(p) be the line segments that 

have p as upper and lower endpoint, and 
C(p) the ones that contain p
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Degenerate Cases

• How efficiently is a multiply coinciding event 
point handled?

• If |U(p)|+|L(p)|+|C(p)| = m, then the event 
takes O(mlogn) time

• What do we report?
– The intersection point itself
– Every pair of intersecting line segments
– The intersection point and every line segment 

involved
• The output size for this one event is then 

O(1), O(m2), or O(m), respectively
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General Sweep Algorithms

For every sweep algorithm:
• Define the status
• Choose the status structure and the event list
• Figure out how events must be handled (with 

sketches!)
• To analyze, determine the number of events and 

how much time they take

Then deal with degeneracies
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Triangulating a Polygon (intro)

Slides by M. van Kreveld
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Polygons and Visibility

• Two points in a simple polygon can see 
each other if their connecting line segment 
is in the polygon
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The Art Gallery Problem

• How many cameras are needed to guard a 
given art gallery so that every point is 
seen?
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The Art Gallery Problem

• In geometry terminology: How many points 
are needed in a simple polygon with n 
vertices so that every point in the polygon 
is seen?

• The optimization problem is 
computationally difficult

• Art Gallery Theorem: cameras are 
occasionally necessary but always 
sufficient
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The Art Gallery Problem

• Art Gallery Theorem: cameras are 
occasionally necessary but always 
sufficient
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Diagonals

• Why are cameras always 
enough?

• Assume polygon P is 
triangulated: a decomposition 
of P into disjoint triangles by a 
maximal set of non-intersecting 
diagonals

• Diagonal of P: open line 
segment that connects two 
vertices of P and fully lies in the 
interior of P
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A Triangulation Always Exists
• Lemma: A simple polygon with n 

vertices can always be triangulated, 
and always with n-2 triangles

• Proof: Induction on n. If n = 3, it is 
trivial

• Assume n > 3. Consider the leftmost 
vertex v and its two neighbors u and 
w.

• Either uw is a diagonal (case 1), or 
part of the boundary of P is in Δuvw
(case 2)

• Case 2: choose the vertex t in Δuvw
farthest from the line through u and 
w, then vt must be a diagonal
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A Triangulation Always Exists

• In case 1, uw cuts the polygon into a triangle and a 
simple polygon with n-1 vertices, and we apply induction

• In case 2, vt cuts the polygon into two simple polygons 
with m and n - m + 2 vertices, 3 ≤ m ≤ n - 1, and we also 
apply induction

• By induction, the two polygons can be triangulated using 
m - 2 and n - m + 2 - 2 = n - m triangles. So the original 
polygon is triangulated using m - 2 + n - m = n – 2 
triangles
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A 3-coloring Always Exists

• Observe: the dual graph 
of a triangulated simple 
polygon is a tree

• Dual graph: each face 
gives a node; two  
nodes are connected if 
the faces are adjacent
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A 3-coloring Always Exists
• Lemma: The vertices of a 

triangulated simple polygon can 
always be 3-colored

• Proof: Induction on the number of 
triangles in the triangulation. Base 
case: True for a triangle

• Every tree has a leaf. Remove the 
corresponding triangle from the 
triangulated polygon, color its 
vertices, add the triangle back, and 
let the extra vertex of the 
neighboring triangle have the color 
that is not present at its neighbors
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A 3-coloring Always Exists
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Cameras are Enough

• For a 3-colored, triangulated 
simple polygon, one of the color 
classes is used by at most 
colors. 
– Place the cameras at these vertices

• This argument is called the 
pigeon-hole principle

• Why does the proof fail when the 
polygon has holes?
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