
CS 532: 3D Computer Vision
11th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1

Lecture Outline
• Line Intersection
• Polygon triangulation

• David M. Mount, CMSC 754: Computational
Geometry lecture notes, Department of Computer
Science, University of Maryland, Spring 2012
– Lectures 5 and 6

• Slides by:
– P. Indyk and J.C. Yang (MIT)
– M. van Kreveld (Utrecht University)

2

Line Segment Intersection

Slides by M. van Kreveld

3

Map Layers

• In a geographic
information system (GIS)
data is stored in separate
layers

• A layer stores the
geometric information
about some theme, like
land cover, road network,
municipality boundaries,
red fox habitat, …

4

Map Overlay
• Map overlay is the combination

of two (or more) map layers
• It is needed to answer

questions like:
– What is the total length of roads

through forests?
– What is the total area of corn fields

within 1km from a river?

• To solve map overlay
questions, we need (at the
least) intersection points from
two sets of line segments
(possibly, boundaries of
regions) 5

The Easy Problem

• Given a set of n line
segments in the
plane, find all
intersection points
efficiently

6

An Easy Algorithm

7

Is it Optimal?

8

Output-sensitive Algorithms

• The asymptotic running time of
an algorithm is always input-
sensitive (depends on n)

• We may also want the running
time to be output-sensitive: if
the output is large, it is fine to
spend a lot of time, but if the
output is small, we want a fast
algorithm

9

Intersection Points in Practice

• Question: How many
intersection points do we
typically expect in our
application?

• If this number is k, and if
k = O(n), it would be nice
if the algorithm runs in
O(nlogn) time

10

First Attempt

• Observation: Two line
segments can only intersect
if their y-spans have an
overlap

• So, how about only testing
pairs of line segments that
intersect in the y-projection?

• 1D problem: Given a set of
intervals on the real line, find
all partly overlapping pairs

11

First Attempt

• 1D problem: Given a set of intervals on the
real line, find all partly overlapping pairs

• Sort the endpoints and handle them from left
to right; maintain currently intersected
intervals in a balanced search tree T
– Left endpoint of si: for each sj in T, report the pair

si; sj. Then insert si in T
– Right endpoint of si: delete si from T

• Question: Is this algorithm output-sensitive
for 1D interval intersection?

12

First Attempt

• Back to the 2D problem:
• Determine the y-intervals of the 2D line

segments
• Find the intersecting pairs of intervals with the

1D solution
• For every pair of intersecting intervals, test

whether the corresponding line segments
intersect, and if so, report it

• Question: Is this algorithm output-sensitive for
2D line segment intersection?

13

Second Attempt

• Refined observation: Two
line segments can only
intersect if their y-spans
have an overlap, and they
are adjacent in the x-order
at that y-coordinate (they
are horizontal neighbors)

14

Plane Sweep

The plane sweep technique: Imagine a horizontal line
passing over the plane from top to bottom, solving the
problem as it moves
• The sweep line stops and the algorithm computes at

certain positions => events
• The algorithm stores the relevant situation at the current

position of the sweep line => status
• The algorithm knows everything it needs to know above

the sweep line, and has found all intersection points

15

Sweep

16

Sweep and Status

17

Status and Events

• The status of this particular plane sweep
algorithm, at the current position of the
sweep line, is the set of line segments
intersecting the sweep line, ordered from
left to right

• Events occur when the status changes,
and when output is generated
– event = interesting y-coordinate

18

Plane Sweep

19

Plane Sweep

20

Plane Sweep

21

Plane Sweep

22

Plane Sweep

23

Plane Sweep

24

Plane Sweep

25

Plane Sweep

26

Plane Sweep

27

Plane Sweep

… and so on …

28

Events

When do the events happen? When the sweep
line is at:

• an upper endpoint of a line segment
• a lower endpoint of a line segment
• an intersection point of a line segment

At each type, the status changes; at the third
type output is found too

29

Assume No Degenerate Cases
We will at first exclude degenerate
cases:

• No two endpoints have the same y-
coordinate

• No more than two line segments
intersect at a point

• …

Question: Are there more degenerate
cases?

30

Event List and Status Structure
• The event list is an abstract data structure that

stores all events in the order in which they occur
• The status structure is an abstract data structure

that maintains the current status
• Here: The status is the subset of currently

intersected line segments in the order of
intersection by the sweep line

31

Status Structure
• We use a balanced binary search tree with the line

segments in the leaves as the status structure

32

Status Structure
• Upper endpoint: search and insert

33

Status Structure
• Upper endpoint: search and insert

34

Status Structure
• Upper endpoint: search and insert

35

Status Structure
• Sweep line reaches lower endpoint of a line

segment: delete from the status structure

• Sweep line reaches intersection point: swap
two leaves in the status structure (and update
information on the search paths)

36

Finding Events

• Before the sweep algorithm starts, we know
all upper endpoint events and all lower
endpoint events

• But: How do we know intersection point
events??? (these we were trying to find …)

• Recall: Two line segments can only intersect
if they are horizontal neighbors

37

Finding Events

• Lemma: Two line segments si and
sj can only intersect after (= below)
they have become horizontal
neighbors

• Proof: Just imagine that the sweep
line is ever so slightly above the
intersection point of si and sj, but
below any other event, prove by
contradiction

• Also: some earlier (= higher) event
made si and sj horizontally adjacent

38

Event List

• The event list must be a priority queue, because
during the sweep, we discover new events that
will happen later

• We know upper endpoint events and lower
endpoint events beforehand; we find intersection
point events when the involved line segments
become horizontal neighbors

39

Plane Sweep Algorithm

40

Event Handling

If the event is an upper endpoint
event, and s is the line segment that
starts at p:
1. Search with p in T, and insert s
2. If s intersects its left neighbor in

T, then determine the intersection
point and insert in Q

3. If s intersects its right neighbor in
T, then determine the intersection
point and insert in Q

41

Event Handling

If the event is a lower endpoint
event, and s is the line segment that
ends at p:
1. Search with p in T, and delete s
2. Let sl and sr be the left and right

neighbors of s in T (before
deletion). If they intersect below
the sweep line, then insert their
intersection point as an event in
Q

42

Event Handling
If the event is an intersection point
event where s and s’ intersect at p:
1. Exchange s and s’ in T
2. If s’ and its new left neighbor in T

intersect below the sweep line,
then insert this intersection point
in Q

3. If s and its new right neighbor in
T intersect below the sweep line,
then insert this intersection point
in Q

4. Report the intersection point

43

Event Handling

Is it possible that new
horizontal neighbors
already intersected
above the sweep line?

Is it possible that we
insert a newly detected
intersection point event,
but it already occurs in
Q?

44

Efficiency

• How much time to handle an event?
• At most one search in T and/or one insertion,

deletion, or swap
• At most twice finding a neighbor in T
• At most one deletion from and two insertions

in Q
• Since T and Q are a balanced binary search

tree and a priority queue, handling an event
takes only O(logn) time

45

Efficiency

• How many events?
– 2n for the upper and lower endpoints
– k for the intersection points, if there are k of

them

• In total: O(n+k) events

46

Efficiency

• Initialization takes O(nlogn) time (to put all upper
and lower endpoint events in Q)

• Each of the O(n+k) events takes O(logn) time
• The algorithm takes O(nlogn+k logn) time
• If k = O(n), then this is O(nlogn)
• Note that if k is really large, the brute force O(n2)

time algorithm is more efficient

47

Degenerate Cases

• How do we deal with degenerate cases?
• For two different events with the same y-

coordinate, we treat them from left to right => the
“upper" endpoint of a horizontal line segment is
its left endpoint

48

Degenerate Cases

• How about multiply coinciding event points?
• Let U(p) and L(p) be the line segments that

have p as upper and lower endpoint, and
C(p) the ones that contain p

49

Degenerate Cases

• How efficiently is a multiply coinciding event
point handled?

• If |U(p)|+|L(p)|+|C(p)| = m, then the event
takes O(mlogn) time

• What do we report?
– The intersection point itself
– Every pair of intersecting line segments
– The intersection point and every line segment

involved
• The output size for this one event is then

O(1), O(m2), or O(m), respectively

50

General Sweep Algorithms

For every sweep algorithm:
• Define the status
• Choose the status structure and the event list
• Figure out how events must be handled (with

sketches!)
• To analyze, determine the number of events and

how much time they take

Then deal with degeneracies

51

Triangulating a Polygon (intro)

Slides by M. van Kreveld

52

Polygons and Visibility

• Two points in a simple polygon can see
each other if their connecting line segment
is in the polygon

53

The Art Gallery Problem

• How many cameras are needed to guard a
given art gallery so that every point is
seen?

54

The Art Gallery Problem

• In geometry terminology: How many points
are needed in a simple polygon with n
vertices so that every point in the polygon
is seen?

• The optimization problem is
computationally difficult

• Art Gallery Theorem: cameras are
occasionally necessary but always
sufficient

55

The Art Gallery Problem

• Art Gallery Theorem: cameras are
occasionally necessary but always
sufficient

56

Diagonals

• Why are cameras always
enough?

• Assume polygon P is
triangulated: a decomposition
of P into disjoint triangles by a
maximal set of non-intersecting
diagonals

• Diagonal of P: open line
segment that connects two
vertices of P and fully lies in the
interior of P

57

A Triangulation Always Exists
• Lemma: A simple polygon with n

vertices can always be triangulated,
and always with n-2 triangles

• Proof: Induction on n. If n = 3, it is
trivial

• Assume n > 3. Consider the leftmost
vertex v and its two neighbors u and
w.

• Either uw is a diagonal (case 1), or
part of the boundary of P is in Δuvw
(case 2)

• Case 2: choose the vertex t in Δuvw
farthest from the line through u and
w, then vt must be a diagonal

58

A Triangulation Always Exists

• In case 1, uw cuts the polygon into a triangle and a
simple polygon with n-1 vertices, and we apply induction

• In case 2, vt cuts the polygon into two simple polygons
with m and n - m + 2 vertices, 3 ≤ m ≤ n - 1, and we also
apply induction

• By induction, the two polygons can be triangulated using
m - 2 and n - m + 2 - 2 = n - m triangles. So the original
polygon is triangulated using m - 2 + n - m = n – 2
triangles

59

A 3-coloring Always Exists

• Observe: the dual graph
of a triangulated simple
polygon is a tree

• Dual graph: each face
gives a node; two
nodes are connected if
the faces are adjacent

60

A 3-coloring Always Exists
• Lemma: The vertices of a

triangulated simple polygon can
always be 3-colored

• Proof: Induction on the number of
triangles in the triangulation. Base
case: True for a triangle

• Every tree has a leaf. Remove the
corresponding triangle from the
triangulated polygon, color its
vertices, add the triangle back, and
let the extra vertex of the
neighboring triangle have the color
that is not present at its neighbors

61

A 3-coloring Always Exists

62

Cameras are Enough

• For a 3-colored, triangulated
simple polygon, one of the color
classes is used by at most
colors.
– Place the cameras at these vertices

• This argument is called the
pigeon-hole principle

• Why does the proof fail when the
polygon has holes?

63

