
CS 532: 3D Computer Vision 
1st Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215
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Objectives

• Approach Computer Vision from a 
geometric, 3D perspective
– Negligible overlap with traditional Computer 

Vision course (CS 558)
– Explain image formation, single and multi-

view geometry, structure from motion
• Introduce Computational Geometry 

concepts
– Point clouds, meshes, Delaunay triangulation
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Important Points

• This is an elective course. You chose to be 
here.

• Expect to work and to be challenged.
• Exams won’t be based on recall. They will 

be open book and you will be expected to 
solve new problems.
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Logistics

• Office hours: Tuesday 5-6 and by email
• Evaluation:

– 7 homework sets (70%)
– Quizzes and participation (15%)
– Final exam (15%)
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Textbooks

• Richard Szeliski, Computer Vision: 
Algorithms and Applications, Springer, 
2010

• David M. Mount, CMSC 754: 
Computational Geometry lecture notes, 
Department of Computer Science, 
University of Maryland, Spring 2012

• Both available online
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What is Computer Vision

• Why is it not image processing?
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Graphics vs. Vision

Shape Lights Viewpoint
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Graphics vs. Vision

Shape Lights Viewpoint

???
?
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Vision is Hard
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Vision is Hard
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Vision is Hard
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Vision is Hard
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Vision is Hard
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Vision is Hard

• A 2D picture may be produced by many different 3D scenes
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Vision is Hard
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Vision is Hard
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Vision is Hard
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Why is Vision Hard?
• Loss of information due to projection from 3D to 

2D
– Infinite scenes could have generated a given image

• Image colors depend on surface properties, 
illumination, camera response function and 
interactions such as shadows
– HVS very good at ignoring distractors

• Noise 
– sensor noise and nonlinearities, quantization

• Lots of data
• Conflicts among local and global cues

– Illusions
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The Horizon
• Not all hard to explain phenomena are 

unusual…
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Vanishing Points
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Why 3D Vision?

• Structure from Motion
– Simultaneous Localization and Mapping

• 3D reconstruction
– Dense mapping …

• 3D motion capture
• Medical applications
• Robotics and autonomous driving

– Driver assistance
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3D Models
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Real-Time Video-based 3D Reconstruction

• Goal: real-time reconstruction of urban 
environments for visualization and training

• Platform: 
– 8 non-overlapping cameras
– Differential GPS
– Inertial Navigation System
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Data Collection
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Results: Chapel Hill



Depth Map Estimation

3 of 11 images and corresponding depth maps
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Raw Depth Map Fused Depth Map

Depth Map Fusion

Colored Point Clouds 30



Fluid-in-Video
• Insert non-rigid objects in real video
• Stereo generates visible surfaces only
• Need: 

– Plausible completion of invisible surfaces 
– 3D velocities 
– Temporal consistency for fluid simulation stability
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Fluid Simulation
• Discretize reconstructed objects onto grid

– Signed Distance Function representation

• Foreground discretized for
every simulation time-step

• Background discretized
just once
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AIBO and Water
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AIBO and Honey
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Baby and Water
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Baby and Milk
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Car Detection
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Apple Maps Flyover – New York
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Visual Turing Test (UW)
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Introduction to Geometry

Based on slides by M. Pollefeys (ETH)
and D. Cappelleri (Purdue)
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Points and Lines in 2D

• A point (x, y) lies on a line (a, b, c) when:
– ax+by+c = 0 or (a, b, c) (x, y, 1) T = 0

• Use homogeneous coordinates to represent 
points => add an extra coordinate
– Note that scale is unimportant for determining 

incidence: k(x, y, 1) is also on the line
– Homogeneous coordinates (x1, x2, x3), but only 

two degrees of freedom
– Equivalent to inhomogeneous coordinates (x, y)
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Points from Lines and Vice Versa

• The intersection of two lines l and l’ is 
given by: l×l’

• The line connecting two points x and x’ is 
given by: x×x’
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Ideal Points and the Line at Infinity

• Intersection of two parallel lines: 
– l = (a, b, c) and l’ = (a, b, c’)
– l×l’ = (b, -a, 0)

• Ideal points: (x1, x2, 0)
• Belong to the line at infinity l = (0, 0, 1)

• P2 = R3-(0, 0, 0) (projective space)
– In P2 there is no distinction between regular and 

ideal points
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Rotation in 2D

• Matrices are operators that transform 
vectors

– 2D rotation matrix R=

• In homogeneous coordinates 

44



Hands-on: 2D Transformations

• How to translate a point in homogeneous 
and inhomogeneous coordinates?

• How to rotate a point around the origin?
• How to rotate a point around a center other 

than the origin?
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Hierarchy of 2D Transformations
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Transformation of Points and Lines

Line transformation
ll' -TH

xx' H
Point transformation

Why?
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3D points
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Planes

0ππππ 4321  ZYX
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3D plane
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Planes from points
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Planes from points
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Points from planes
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Rotations

• Rotation matrices around the 3 axes
=> What is the inverse of a rotation matrix?
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Rotation Example
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Parameterization of Rotations

• In 3D, the 9-element rotation matrix has 3 
DOF

• Several methods exist for representing a 
3D rotation
– Euler angles
– Pitch, Roll, Yaw angles
– Axis/Angle representation
– Quaternions
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Euler Angles

56



Euler Angles
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Euler Angles
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Euler Angles to Rotation Matrix
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Roll, Pitch, Yaw Angles
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Roll, Pitch, Yaw Angles to Rotation 
Matrix
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Rigid Motion
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Homogeneous Transformation
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Hierarchy of 3D Transformations
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Image Formation

Based on slides by John Oliensis
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Image Formation

Pinhole camera

image plane
(film)

pinhole Object
Virtual image
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Projection Equation

• 2D world  1D image

camera center

“Film”

f
(focal length)

Object

x

z

Image

67
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Projection Equation: 3D

Similar triangles:
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Perspective Projection: Properties 

• 3D points  image points
• 3D straight lines  image straight lines

• 3D Polygons  image polygons
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Polyhedra Project to Polygons

(since lines project to lines)
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Properties: Distant objects are smaller

B’ C’
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Properties: Vanishing Points

• Image of an infinitely distant 3D point

72



Vanishing Points + Horizon
• Vanishing point

– Vanishing ray parallel to World Line 
 gives World Line’s direction

• Horizon:  all vanishing points for World Lines in 
(or parallel to) plane.
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Properties: Vanishing Points
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Single View Geometry

Richard Hartley and Andrew Zisserman
Marc Pollefeys

Modified by Philippos Mordohai
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Homogeneous Coordinates

• 3-D points represented as 4-D vectors  (X Y Z 1)T

• Equality defined up to scale   
– (X Y Z 1)T ~ (WX WY WZ W)T

• Useful for perspective projection  makes equations 
linear

C m M1 M2
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Pinhole camera model
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The Pinhole Camera
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Principal Point Offset
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Hands On: Image Formation

• For a 640 by 480 image with focal length 
equal to 640 pixels, find 3D points that are 
marginally visible at the four borders of the 
image

• Increase and decrease the focal length. 
What happens?
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Camera Rotation and Translation
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Intrinsic Parameters

• Camera deviates from pinhole 
s: skew
fx  ≠ fy: different magnification in x and 

y
(cx cy): optical axis does not pierce 

image plane exactly at the center

• Usually:
rectangular pixels:
square pixels:

principal point known:
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Extrinsic Parameters
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Projection matrix
• Includes coordinate transformation and 

camera intrinsic parameters
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• Everything we need to know about a pinhole 
camera 

• Unambiguous
• Can be decomposed into parameters



Projection matrix

• Mapping from 2-D to 3-D is a function of 
internal and external parameters
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Hands On: Camera Motion

• Choose a few 3D points visible to a camera 
at the origin. (f=500, w=500, h=500)

• Now, move the camera by 2 units of length 
on the z axis. What happens to the images of 
the points?

• Rotate the points by 45 degrees about the z 
axis of the camera and then translate them by 
5 units on the z axis away from the camera. 
What are the new images of the points?
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