CS 532: 3D Computer Vision
15t Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215




Objectives

* Approach Computer Vision from a
geometric, 3D perspective

— Negligible overlap with traditional Computer
Vision course (CS 558)

— Explain image formation, single and multi-
view geometry, structure from motion

 Introduce Computational Geometry
concepts

— Point clouds, meshes, Delaunay triangulation



Important Points

e Thisis an elective course. You chose to be
here.

* Expect to work and to be challenged.

« Exams won’t be based on recall. They will

be open book and you will be expected to
solve new problems.



Logistics

» Office hours: Tuesday 5-6 and by emalil

e Evaluation:
— 7 homework sets (70%)
— Quizzes and participation (15%)
— Final exam (15%)



Textbooks

* Richard Szeliski, Computer Vision:
Algorithms and Applications, Springer,
2010

 David M. Mount, CMSC 754:
Computational Geometry lecture notes,
Department of Computer Science,
University of Maryland, Spring 2012

 Both available online



What is Computer Vision

 Why is it not image processing?



Graphics vs. Vision




Graphics vs. Vision




Vision is Hard
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Vision is Hard
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Vision is Hard




Vision is Hard
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Vision is Hard

* A 2D picture may be produced by many different 3D scenes
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Vision is Hard




Vision is Hard
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Why is Vision Hard?

Loss of information due to projection from 3D to
2D

— Infinite scenes could have generated a given image

Image colors depend on surface properties,
Illumination, camera response function and
Interactions such as shadows

— HVS very good at ignoring distractors

Noise
— sensor noise and nonlinearities, quantization

Lots of data

Conflicts among local and global cues
— lllusions



The Horizon

 Not all hard to explain phenomena are
unusual...
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Vanishing Points
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Why 3D Vision?

Structure from Motion
— Simultaneous Localization and Mapping

3D reconstruction
— Dense mapping ...

3D motion capture
Medical applications

Robotics and autonomous driving
— Driver assistance



3D Models




Real-Time Video-based 3D Reconstruction

e Goal: real-time reconstruction of urban
environments for visualization and training
e Platform:

— 8 non-overlapping cameras
— Differential GPS
— Inertial Navigation System
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Data Collection
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Results: Chapel Hill




Depth Map Estimation

I
|
3

3 of 11 images and corresponding depth maps
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Depth Map Fuion

Raw Depth Map Fused Depth Map

Colored Point Clouds

O )
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Fluid-in-Video

* |nsert non-rigid objects in real video
« Stereo generates visible surfaces only

e Need:

— Plausible completion of invisible surfaces
— 3D velocities
— Temporal consistency for fluid simulation stability
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Fluid Simulation

* Discretize reconstructed objects onto grid
— Signed Distance Function representation

» Foreground discretized for
every simulation time-step

 Background discretized
just once
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AIBO and Water




AIBO and Honey




Baby and Water




Baby and Milk




Car Detection
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Apple Maps Flyover - New York
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Visual Turing Test (UW)

The Visual Turing Test for Scene Reconstruction

Supplementary Video

. o + . + . - +
Qi Shan  Riley Adams  Brian Curless

Yasutaka Furukawa® Steve Seitz™

+ ® & i T = *
University of Washington  Google

Shan, Adams, Curless, Furukawa and Seitz (2013)



Introduction to Geometry

Based on slides by M. Pollefeys (ETH)
and D. Cappelleri (Purdue)
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Points and Lines Iin 2D

A point (x, y) lies on a line (a, b, ¢) when:
—axtby+c=0or(a,b,c)(x,y,1)T=0

 Use homogeneous coordinates to represent
points => add an extra coordinate

— Note that scale is unimportant for determining
incidence: k(x, y, 1) is also on the line

— Homogeneous coordinates (X4, X,, X3), but only
two degrees of freedom

— Equivalent to inhomogeneous coordinates (X, y)



Points from Lines and Vice Versa

e The intersection of two lines |l and I is
given by: Ix[’

* The line connecting two points x and X’ is
given by: xxx’



ldeal Points and the Line at Infinity

Intersection of two parallel lines:
—l=(a,b,c)andl’=(a, b, C)
— IxI' = (b, -a, 0)

ldeal points: (x4, X,, 0)
Belong to the line at infinity | = (0, 0, 1)

P2 =R3-(0, 0, 0) (projective space)

— In P? there is no distinction between regular and
ideal points



Rotation in 2D

 Matrices are operators that transform
vectors

cos6 —Sinel

— 2D rotation matrix R=[Sm 9 cosd

* |n homogeneous coordinates K O]

0 1



Hands-on: 2D Transformations

 How to translate a point in homogeneous
and inhomogeneous coordinates?

 How to rotate a point around the origin?

 How to rotate a point around a center other
than the origin?



Hierarchy of 2D Transformations

transformed invariants
squares

Projective
8dof

Affine
6dof

Similarity
4dof

Euclidean
3dof

Fh
h
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Concurrency, collinearity,
order of contact (intersection,
tangency, inflection, etc.),
cross ratio

Parallellism, ratio of areas,
ratio of lengths on parallel
lines (e.g midpoints), linear
combinations of vectors
(centroids).

The line at infinity L.,

Ratios of lengths, angles.
The circular points |,J

. ‘ lengths, areas.
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Transformation of Points and Lines

Point transformation

x'=Hx
Line transformation
'=HT]

Why?



3D points

3D point
(X,Y,Z) inR3
X = (XD X, X3, x4)T in P’

;
X X. X
X=|2L 22 23 1| —(X.Y.Z1)

(x4’x4’x4’) (XY.Z,1) (X, 20)

projective transformation

X'=HX (4x4-1=15 dof)



Planes

3D plane Transformation
nX+nY+n,Z+m, =0 X'=HX
T=H"xn

T, X+, X, +1, X, +7, X, =0
n'X=0

Euclidean representation
n.X+d=0 n=(mn,n,,71,) X=
X

ey =
@]

o

X,Y,z)
1
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Planes from points

Solve t from X n=0,X,mt=0and X;m =0

T _ _
X, X|
T — (solve as right nullspace of 7T ) T
2 n X2
T T
X3 _X3 -

Or implicitly from coplanarity condition
(X (X)) (X,) (X))
Xy (Xp), (X,), (X3),
X (X (%) (Xs),
Xal (X)), (X)),
XDy = X,Dy3y + XDy — XDy =0

= (D234»_ D345 D12y, =Diss )T v

det

=0




Planes from points
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Points from planes

Solve X fromn; X =0, m, X =0andn; X =0

X =0 (solve as right nullspace of X )

Lines are complicated...




Rotations

 Rotation matrices around the 3 axes
=> \What is the inverse of a rotation matrix?

1 0 0
R.o=1 0 cosfl —sinf
| 0 siné cos

C cosf 0 sinf
Ry, = 0 1 ()
—sinf 0 cos#

C cosf —sinf 0
R.g= | sinff cosf 0
0 0 1




Rotation Example

Yo

The rotation matrix can be used to
perform arbitrary rotations on vectors

» Lo
0 = 90° o
0
pa pa p— O
1
cosf —sind 0
pg = Rz,() pg =| sinf# cos# 0

0

0

1
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Parameterization of Rotations

e |[n 3D, the 9-element rotation matrix has 3

DOF
o Several methods exist for representing a

3D rotation

— Euler angles

— Pitch, Roll, Yaw angles

— Axis/Angle representation

— Quaternions



Euler Angles




Euler Angles




Euler Angles




Euler Angles to Rotation Matrix

(post-multiply using the basic rotation matrices)

R=R., R, R.,

(_‘Qf,(“‘g("w — H¢Hw —('q’)('g.'%‘w — H(D(w (?C,f)'qe
= SHpCOCY + CHpSyy —SpCeSy + CHCyy  SpSe
—S’g(‘w S‘g.‘%‘w Cp

i Ce —Sé 0 17T Cp 0 S50 1T Cay — Sy
— S¢ Co 0 0 1 0 Sqf Cy
0 0 L[ —se O co || O 0
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Roll, Pitch, Yaw Angles

defined as a set of three angles about a fixed reference

=0
Y
\____% A 0
roll
.f/\':
. -
\ \
". 4 0
\- / pitch
/— Y
Lo yaw

- Yo
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Roll, Pitch, Yaw Angles to Rotation

Matrix

(pre-multiply using the basic rotation matrices)

R=R.,R,0 R,

¢y —54 O] [ co 0 sg][1 0O
=184 ¢co 0 0 1 0 0 ¢y
B 0 O 1_ i — S50 O co 1 L O 'S'w

CHpCH CpSOSyY — SpCyhy  SpSyy T CHSHCy
— qu('fg quh"g.‘#w + (Cb(’»b S‘qb.‘%g("w — (ésw
—Se co .‘%‘w CH (“w

— .‘i.d,
Y
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Rigid Motion

a rigid motion couples pure translation with pure rotation

rigid motions can be expressed as

L0
p'=Rip' +d)
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Homogeneous Transformation

a homogeneous transform is a matrix representation of rigid motion,

defined as
R d
- |5 Y

where R is the 3x3 rotation matrix, and d is the |x3 translation vector

Ng Sy Aag d:r:
Ny Sy Gy dy
H =
n, Sz 0az dz
0 0 0

the inverse of a homogeneous transform can be expressed as

R" —R'd
-1
il NI
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Hierarchy of 3D Transformations

Projective
15dof

Affine
12dof

Similarity
7dof

Euclidean
edof

A

Intersection and tangency

Parallellism of planes,
Volume ratios, centroids,
The plane at infinity 1.,

Angles, ratios of length
The absolute conic Q.

Volume

7

ETH
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Image Formation

Based on slides by John Oliensis



Image Formation

Pinhole camera

image plane
(film)

A\ \
\\\/ \

pinhole Object

Virtual image



Projection Equation

e 2D world = 1D image

Object
Image

+/ “x

camera center /I
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Projection Equation: 3D

(X,Y,2)
v °
y
X 1 _4 Y
v
>/
f /
o Xx_y_ 1 _
Similar triangles: szzf — (X y)_—(X Y)
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Perspective Projection: Properties

« 3D points = image points
« 3D straight lines =» image straight lines

~

/
3D Polygons = image polygons




Polyhedra Project to Polygons

(since lines project to lines)

=y




Properties: Distant objects are smaller

b
&
n -~
"
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Properties: Vanishing Points

* Image of an infinitely distant 3D point

, A Hed P PPN e
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Vanishing Points + Horizon

* Vanishing point

— Vanishing ray parallel to World Line
= gives World Line's direction

VAMNISHING POINT 1

VANISHING POINT 2

X

HORIZON LINE *
GUIDES COMVERGE

TO VANISHING POINTS

TWO-POINT PERSPECTIVE

* Horizon: all vanishing points for World
(or parallel to) plane.

_Ines In
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Properties: Vanishing Points

vanishing points M
7 ‘7 >/

7 » 27 7
~ < .-*‘
£ WoN, T Ty
f:" \ #“Hf
\ &
4
oRE-potig mwe-point three-point
perspective perspective perspective

¥
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Single View Geometry

Richard Hartley and Andrew Zisserman
Marc Pollefeys

Modified by Philippos Mordohai
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Homogeneous Coordinates

 3-D points represented as 4-D vectors (XY Z 1)T

e Equality defined up to scale
— (XY Z 1T~ (WXWY WZW)T

» Useful for perspective projection - makes equations
linear




‘Y

\

Pinhole camera model

camera
centre -f/

///
- X
Ay -
P > Z
P %
/,/ * principal ax
/ n
i

mage plane

(X,Y,Z) > (fX/Z, 1Y /2Z)

(X
Y
V4

1)

(X
fY

< )

(X )
Y
V4

1)

linear projection in homogeneous coordinates!
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The Pinhole Camera

iJE'&:'!Z

(o1
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Principal Point Offset

Yo
YA

—l—

(X,Y,Z) = (IX/Z+p,fY/Z+p,)

T
(pX, py) principal point

(X)) _ (X
v (X +Zp, ) | f p, O v
—| Y +2Zp, |= f p, 0
/ y y 7
. £ 1 0
\1/ - _\1/




Principal Point Offset

S x=xiok,,

_ X
[ fX + pr\ f P, 0
fv+zp |=| £ p, 0 \z(
. Z ) | 1 0 |
o N
K — f P, calibration matrix
1




Hands On: Image Formation

 Fora 640 by 480 image with focal length
equal to 640 pixels, find 3D points that are
marginally visible at the four borders of the
Image

* Increase and decrease the focal length.
What happens?



Camera Rotation and Translation

R —RC|
0 1




Camera Rotation and Translation

x =PX
P=K|R |t]
t=—RC




Intrinsic Parameters

f. s «c af  f cos(s)
— or K — f
K f, ¢,
1 i
e Camera deviates from pinhole _Yf sf
S. skew
f, # 1, different magnification in xand K = f
y
(c,c,): optical axis does not pierce
image plane exactly at the center B

e Usually:
rectangular pixels: s=0
square pixels:
principal point known: fx = fy




Extrinsic Parameters

X
R t B
Scene motion M = (3x3) (3x1)
Oy 1
- ) )
Camera motion M': R (3x3) = (R t) Ix1
O I




Projection matrix

 Includes coordinate transformation and
camera intrinsic parameters

I I x]
X D117 P2 Pz Py Y
A Y{=| P2 Pa Paz Poy 7
i 1_ i 031 P32 Psz Pag 11

* Everything we need to know about a pinhole
camera

e Unambiguous

e Can be decomposed into parameters



Projection matrix

 Mapping from 2-D to 3-D is a function of
internal and external parameters

I _ X
X f. s c, v
Ayl=l0 f, ¢ R RTJ

VA

- - - 1

w=K[RT|-RTt)X
X =PX




Hands On: Camera Motion

 Choose a few 3D points visible to a camera
at the origin. (f=500, w=500, h=500)

 Now, move the camera by 2 units of length
on the z axis. What happens to the images of
the points?

* Rotate the points by 45 degrees about the z
axis of the camera and then translate them by
5 units on the z axis away from the camera.
What are the new images of the points?



